Automatic Evaluation of Document Binarization Results

  • E. Badekas
  • N. Papamarkos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)

Abstract

Most of the document binarization techniques have many parameters that can initially be specified. Usually, subjective document binarization evaluation, employs human observes for the estimation of the best parameter values of the techniques. Thus, the selection of the best values for these parameters is crucial for the final binarization result. However, there is not any set of parameters that guarantees the best binarization result for all document images. It is important, the estimation of the best values to be adaptive for each one of the processing images. This paper proposes a new method which permits the estimation of the best parameter values for each one of the document binarization techniques and also the estimation of the best document binarization result of all techniques. In this way, document binarization techniques can be compared and evaluated using, for each one of them, the best parameter values for every document image.

Keywords

Binary Image Receiver Operating Characteristic Binarization Result Document Image Foreground Pixel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Yitzhaky, Y., Peli, E.: A Method for Objective Edge Detection Evaluation and Detector Parameter Selection. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(8), 1027–1033 (2003)CrossRefGoogle Scholar
  2. 2.
    Otsu, N.: A thresholding selection method from gray-level histogram. IEEE Trans. Systems Man Cybernet SMC-8, 62–66 (1978)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition. World Scientific Publishing, Singapore (1996)MATHGoogle Scholar
  4. 4.
    Niblack, W.: An Introduction to Digital Image Processing, pp. 115–116. Prentice Hall, Englewood Cliffs (1986)Google Scholar
  5. 5.
    Sauvola, J., Seppanen, T., Haapakoski, S., Pietikainen, M.: Adaptive Document Binarization, ICDAR Ulm Germany, 147-152 (1997)Google Scholar
  6. 6.
    Sauvola, J., Pietikainen, M.: Adaptive Document Image Binarization. Pattern Recognition 33, 225–236 (2000)CrossRefGoogle Scholar
  7. 7.
    Bernsen, J.: Dynamic thresholding of grey-level images. In: Proc. Eighth Int. Conf. Pattern Recognition, Paris, pp. 1251–1255 (1986)Google Scholar
  8. 8.
    Kamel, M., Zhao, A.: Extraction of binary character / graphics images from gray-scale document images. CVGIP: Graphical Models Image Process 55(3), 203–217 (1993)Google Scholar
  9. 9.
    Yang, Y., Yan, H.: An adaptive logical method for binarization of degraded document images. Pattern Recognition 33, 787–807 (2000)CrossRefGoogle Scholar
  10. 10.
    White, J.M., Rohrer, G.D.: Image segmentation for optical character recognition and other applications requiring character image extraction. IBM J. Res. Dev. 27(4), 400–411 (1983)CrossRefGoogle Scholar
  11. 11.
    Trier, O.D., Taxt, T.: Improvement of ‘Integrated Function Algorithm’ for binarization of document images. Pattern Recognition Letters 16, 277–283 (1995)CrossRefGoogle Scholar
  12. 12.
    Badekas, E., Papamarkos, N.: A system for document binarization. In: 3rd International Symposium on Image and Signal Processing and Analysis ISPA 2003, Rome, Italy (2003)Google Scholar
  13. 13.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1), 146–165 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • E. Badekas
    • 1
  • N. Papamarkos
    • 1
  1. 1.Image Processing and Multimedia Laboratory, Department of Electrical & Computer EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations