Intelligent Techniques for Web Personalization

  • Sarabjot Singh Anand
  • Bamshad Mobasher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3169)

Abstract

In this chapter we provide a comprehensive overview of the topic of Intelligent Techniques for Web Personalization. Web Personalization is viewed as an application of data mining and machine learning techniques to build models of user behaviour that can be applied to the task of predicting user needs and adapting future interactions with the ultimate goal of improved user satisfaction. This chapter survey’s the state-of-the-art in Web personalization. We start by providing a description of the personalization process and a classification of the current approaches to Web personalization. We discuss the various sources of data available to personalization systems, the modelling approaches employed and the current approaches to evaluating these systems. A number of challenges faced by researchers developing these systems are described as are solutions to these challenges proposed in literature. The chapter concludes with a discussion on the open challenges that must be addressed by the research community if this technology is to make a positive impact on user satisfaction with the Web.

References

  1. 1.
    Mulvenna, M., Anand, S.S., Buchner, A.G.: Personalization on the net using web mining. Communication of ACM 43 (2000)Google Scholar
  2. 2.
    Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.: Crisp-dm 1.0: Step-by-step data mining guide (2000), http://www.crisp-dm.org
  3. 3.
    Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for mining world wide web browsing patterns. Knowledge and Information Systems 1 (1999)Google Scholar
  4. 4.
    Middleton, S.E., Shadbolt, N.R., Roure, D.C.D.: Ontological user profiling in recommender systems. ACM Transactions on Information Systems 22, 54–88 (2004)CrossRefGoogle Scholar
  5. 5.
    Haase, P., Ehrig, M., Hotho, A., Schnizler, B.: Personalized information access in a bibliographic peer-to-peer system. In: Proceedings of the AAAI Workshop on Semantic Web Personalization, AAAI Workshop Technical Report, pp. 1–12 (2004)Google Scholar
  6. 6.
    Sieg, A., Mobasher, B., Burke, R.: Inferring user’s information context: Integrating user profiles and concept hierarchies. In: Proceedings of the 2004 Meeting of the International Federation of Classification Societies (2004)Google Scholar
  7. 7.
    Mobasher, B., Dai, H., Luo, T., Sung, Y., Nakagawa, M., Wiltshire, J.: Discovery of aggregate usage profiles for web personalization. In: Proceedings of the Web Mining for E-Commerce Workshop (WebKDD 2000), held in conjunction with the ACM-SIGKDD Conference on Knowledge Discovery in Databases (KDD 2000) (2000)Google Scholar
  8. 8.
    Anand, S.S., Mulvenna, M., Chevalier, K.: On the deployment of web usage mining. In: Berendt, B., Hotho, A., Mladenič, D., van Someren, M., Spiliopoulou, M., Stumme, G. (eds.) EWMF 2003. LNCS (LNAI), vol. 3209, pp. 23–42. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Lang, K.: Newsweeder: Learning to filter netnews. In: Proceedings of the 12th International Conference on Machine Learning (1995)Google Scholar
  10. 10.
    Salton, G.: Developments in automatic text retrieval. Science 253, 974–980 (1991)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Rissanen, J.: Modelling by shortest data description. Automatica 14, 465–471 (1978)CrossRefMATHGoogle Scholar
  12. 12.
    Resnick, P., Iacovou, N., Sushak, M., Bergstrom, P., Riedl, J.: Grouplens: An open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 Computer Supported Collaborative Work Conference (1994)Google Scholar
  13. 13.
    Mobasher, B., Dai, H., Luo, T., Sung, Y., Zhu, J.: Integrating web usage and content mining for more effective personalization. In: Proceedings of the International Conference on E-Commerce and Web Technologies (2000)Google Scholar
  14. 14.
    Balabanovic, M., Shohan, Y.: Fab: Content-based, collaborative recommendation. Communications of the ACM 40, 66–72 (1997)CrossRefGoogle Scholar
  15. 15.
    Burke, R.: Knowledge-based recommender systems. Encyclopedia of Library and Information Systems 69 (2000)Google Scholar
  16. 16.
    McGinty, L., Smyth, B.: Improving the performance of recommender systems that use critiquing. In: Intelligent Techniques for Web Personalization. LNCS (LNAI), Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Lorenzi, F., Ricci, F.: Case-based recommender systems: a unifying view. In: Intelligent Techniques in Web Personalisation. LNCS (LNAI), Springer, Heidelberg (2005)Google Scholar
  18. 18.
    McGinty, L., Smyth, B.: Comparison-based recommendation. In: Proceedings of the 6th European Conference on Case-based Reasoning (2002)Google Scholar
  19. 19.
    Burke, R., Hammond, J., Kulyukin, V.A., Lytinen, S.L., Tomuro, N., Schoenberg, S.: Question answering from frequently asked question files. AI Magazine 18, 57–66 (1997)Google Scholar
  20. 20.
    Fesenmaier, D.R., Ricci, F., Schaumlechner, E., Wober, K., Zanella, C.: Dietorecs: Travel advisory for multiple decision styles. In: Frew, A.J., Hitz, M., O’Connor, P. (eds.) Information and Communication Technologies in Tourism, pp. 232–241. Springer, Heidelberg (2003)Google Scholar
  21. 21.
    Shimazu, H.: Expertclerk: A conversational case-based reasoning tool for developing salesclerk agents in e-commerce webshops. Artificial Intelligence Review 18, 223–244 (2002)CrossRefGoogle Scholar
  22. 22.
    Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 76–80 (2003)Google Scholar
  23. 23.
    Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on web usage mining. Communication of ACM 43 (2000)Google Scholar
  24. 24.
    Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Effective personalization based on association rule discovery from web usage data. In: Proceedings of the 3rd ACM Workshop on Web Information and Data Management (WIDM 2001), held in conjunction with the International Conference on Information and Knowledge Management (2001)Google Scholar
  25. 25.
    Eirinaki, M., Vlachakis, J., Anand, S.S.: Ikum: An integrated web personalization platform based on content structures and usage behaviour. In: Intelligent Techniques in Web Personalisation. LNCS, Springer, Heidelberg (2005)Google Scholar
  26. 26.
    Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: Applying collaborative filtering to usenet news. Communications of the ACM 40, 77–87 (1997)CrossRefGoogle Scholar
  27. 27.
    Good, N., Schafer, J.B., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J., Riedl, J.: Combining collaborative filtering with personal agents for better recommendations. In: Proceedings of the 1999 Conference of the American Association of Artificial Intelligence (AAAI 1999), pp. 439–446 (1999)Google Scholar
  28. 28.
    Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating word of mouth. In: Proceedings of CHI, pp. 210–217 (1995)Google Scholar
  29. 29.
    Ghani, R., Fano, A.: Building recommender systems using a knowledge base of product semantics. Accenture Technology Labs (2002)Google Scholar
  30. 30.
    Pazzani, M.: A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review 13, 393–408 (1999)CrossRefGoogle Scholar
  31. 31.
    Krulwich, B.: Lifestyle finder: Intelligent user profiling using large-scale demographic data. AI Magazine 18, 37–45 (1997)Google Scholar
  32. 32.
    Maes, P.: Agents that reduce work and information overload. Communications of the ACM 37, 30–40 (1994)CrossRefGoogle Scholar
  33. 33.
    Yang, Y.: Expert network: Effective and efficient learning from human decisions in text categorization and retrieval. In: Proceedings of the 7th International ACM-SIGIR Conference on Research and Development in Information Retrieval, pp. 13–22 (1994)Google Scholar
  34. 34.
    O’Riordan, A., Sorensen, H.: An intelligent agent for high-precision text filtering. In: Proceedings of the 4th International Conference on Information and Knowledge Management, pp. 205–211 (1995)Google Scholar
  35. 35.
    Sieg, A., Mobasher, B., Burke, R., Prabhu, R.G., Lytinen, S.: Representing user information context with ontologies. In: Proceedings of HCI International Conference, pp. 210–217 (2005)Google Scholar
  36. 36.
    Parent, S., Mobasher, B., Lytinen, S.: An adaptive agent for web exploration based on concept hierarchies. In: Proceedings of the 9th International Conference on Human Computer Interaction (2001)Google Scholar
  37. 37.
    Cassel, L., Wolz, U.: Client side personalization. In: Proceedings of the Second DELOS Network of Excellence Workshop on Personalization and Recommender Systems in Digital Libraries (2001)Google Scholar
  38. 38.
    Guttman, R., Maes, P.: Agent-mediated integrative negotiation for retail electronic commerce. In: Proceedings of the Workshop on Agent Mediated Electronic Trading (1998)Google Scholar
  39. 39.
    Murthi, B., Sarkar, S.: The role of the management sciences in research on personalization. Review of Marketing Science Working Papers 2 (2002)Google Scholar
  40. 40.
    Nichols, D.M.: Implicit rating and filtering. In: Proceedings of the fifth DELOS Workshop on Filtering and Collaborative Filtering, pp. 31–36 (1998)Google Scholar
  41. 41.
    Rucker, J., Polanco, M.: Siteseer: Personalized navigational for the web. Communications of the ACM 40, 73–76 (1997)CrossRefGoogle Scholar
  42. 42.
    Lieberman, H.: Autonomous interface agents. In: Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 67–74 (1997)Google Scholar
  43. 43.
    Claypool, M., Le, P., Waseda, M., Brown, D.: Implicit interest indicators. In: Proceedings of the 6th International Conference on Intelligent User Interfaces, pp. 33–40 (2001)Google Scholar
  44. 44.
    Lieberman, H.: Letizia: An agent that assists web browsing. In: Proceedings of the 14th International Joint Conference in Artificial Intelligence, pp. 924–929 (1995)Google Scholar
  45. 45.
    Mladenic, D.: Personal web watcher: Implementation and design. Technical Report IJS-DP-7472, Department of Intelligent Systems, J. Stefan Institute, Slovenia (1996)Google Scholar
  46. 46.
    Schwab, I., Kobsa, A., Koychev, I.: Learning about users from observation. In: Adaptive User Interfaces: Papers from the 2000 AAAI Spring Symposium (2000)Google Scholar
  47. 47.
    Holte, R.C.: Yan: Inferring what a user is not interested in. In: Proceedings of the 11th Biennial Conference of the Canadian Society for Computational Studies of Intelligence on Advances in Artificial Intelligence. LNCS, pp. 159–171. Springer, Heidelberg (1996)Google Scholar
  48. 48.
    Carroll, J., Rosson, M.B.: The paradox of the active user. In: Carrol, J.M. (ed.) Interfacing Thought: Cognitive Aspects of Human-Computer Interaction, MIT Press, Cambridge (2005)Google Scholar
  49. 49.
    Sarwar, B.M., Konstan, J.A., Borchers, A., Herlocker, J., Miller, B., Riedl, J.: Using filtering agents to improve prediction quality in the grouplens research collaborative filtering system. In: Computer Supported Cooperative Work, pp. 345–354 (1998)Google Scholar
  50. 50.
    Berendt, B., Teltzrow, M.: Addressing users’ privacy concerns for improving personalization quality: Towards an integration of user studies and algorithm evaluation. In: Intelligent Techniques in Web Personalisation. LNCS (LNAI), pp. 69–88. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  51. 51.
    Krulwich, B., Burkey, C.: Learning user information interests through extraction of semantically significant phrases. In: Proceedings of the AAAI Spring Symposium on Machine Learning in Information Access (1996)Google Scholar
  52. 52.
    Pazzani, M., Billsus, D.: Learning and revising user profiles: The identification of interesting web sites. Machine Learning 27, 313–331 (1997)CrossRefGoogle Scholar
  53. 53.
    Mladenic, D.: Text-learning and related intelligent agents: A survey. IEEE Intelligent Agents, 44–54 (1999)Google Scholar
  54. 54.
    Heckerman, D.: A tutorial on learning with bayesian networks. Technical Report MSR-TR-95-06, Microsoft Corporation (1995)Google Scholar
  55. 55.
    Sinha, R., Swearingen, K.: Comparing recommendaions made by online systems and friends. In: Proceedings of Delos-NSF Workshop on Personalisation and Recommender Systems in Digital Libraries (2001)Google Scholar
  56. 56.
    Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Communications of the ACM 35 (1992)Google Scholar
  57. 57.
    Schafer, J., Konstan, J., Riedl, J.: Recommender systems in e-commerce. In: Proceedings of the ACM Conference on Electronic Commerce (1999)Google Scholar
  58. 58.
    Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Application of dimensionality reduction in recommender system - a case study. In: ACM WebKDD 2000 Web Mining for E-Commerce Workshop (2000)Google Scholar
  59. 59.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence, pp. 43–52 (1998)Google Scholar
  60. 60.
    Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: Proceedings of the 1999 Conference on Research and Development in Information Retrieval (1999)Google Scholar
  61. 61.
    Lam, S., Riedl, J.: Shilling recommender systems for fun and profit. In: Proceedings of the 13th international conference on World Wide Web, pp. 393–402 (2004)Google Scholar
  62. 62.
    Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference (2001)Google Scholar
  63. 63.
    Ungar, L., Foster, D.P.: Clustering methods for collaborative filtering. In: Proceedings of the Workshop on Recommendation Systems (1998)Google Scholar
  64. 64.
    O’Connor, M., Herlocker, J.: Clustering items for collaborative filtering. In: Proceedings of ACM SIGIR 1999 Workshop on Recommender Systems: Algorithms and Evaluation (1999)Google Scholar
  65. 65.
    Kohrs, A., Merialdo, B.: Clustering for collaborative filtering applications. In: Computational Intelligence for Modelling, Control & Automation, IOS Press, Amsterdam (1999)Google Scholar
  66. 66.
    Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society 39, 1–38 (1977)MathSciNetMATHGoogle Scholar
  67. 67.
    Agrawal, R., Imielinski, T., Swami, A.: Mining associations between sets of items in massive databases. In: Proceedings of the ACM-SIGMOD 1993 International Conference on Management of Data, pp. 207–216 (1993)Google Scholar
  68. 68.
    Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the International Conference on Data Engineering (ICDE) (1995)Google Scholar
  69. 69.
    Baumgarten, M., Buchner, A.G., Anand, S.S., Mulvenna, M.D., Hughes, J.: User-driven navigation pattern discovery from internet data. In: Masand, B., Spiliopoulou, M. (eds.) WebKDD 1999. LNCS (LNAI), vol. 1836, pp. 74–91. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  70. 70.
    Padmanabhan, B., Tuzhilin, A.: Unexpectedness as a measure of interestingness in knowledge discovery. Decision Support Systems 27, 303–318 (1999)CrossRefGoogle Scholar
  71. 71.
    Silberschatz, A., Tuzhilin, A.: What makes patterns interesting in knowledge discovery systems. IEEE Transactions on Knowledge and Data Engineering 8, 970–974 (1996)CrossRefGoogle Scholar
  72. 72.
    Tan, P., Kumar, V., Srivastava, J.: Selecting the right objective measure for association analysis. Information Systems 29, 293–313 (2004)CrossRefGoogle Scholar
  73. 73.
    Fu, X., Budzik, J., Hammond, K.J.: Mining navigation history for recommendation. In: Proceedings of the 2000 International Conference on Intelligent User Interfaces, New Orleans, LA, ACM Press, New York (2000)Google Scholar
  74. 74.
    Lin, W., Alvarez, S.A., Ruiz, C.: Efficient adaptive-support association rule mining for recommender systems. Data Mining and Knowledge Discovery 6, 83–105 (2002)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Effective personalization based on association rule discovery from web usage data. In: Proceedings of the 3rd ACM Workshop on Web Information and Data Management (WIDM 2001), Atlanta, Georgia (2001)Google Scholar
  76. 76.
    Sarwar, B.M., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommender algorithms for e-commerce. In: Proceedings of the 2nd ACM E-Commerce Conference (EC 2000), Minneapolis, MN (2000)Google Scholar
  77. 77.
    Agarwal, R., Aggarwal, C., Prasad, V.: A tree projection algorithm for generation of frequent itemsets. In: Proceedings of the High Performance Data Mining Workshop, Puerto, Rico (1999)Google Scholar
  78. 78.
    Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the International Conference on Data Engineering (ICDE 1995), Taipei, Taiwan (1995)Google Scholar
  79. 79.
    Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Using sequential and non-sequential patterns for predictive web usage mining tasks. In: Proceedings of the IEEE International Conference on Data Mining (2002)Google Scholar
  80. 80.
    Nakagawa, M., Mobahser, B.: Impact of site characteristics on recommendation models based on association rules and sequential patterns. In: Proceedings of the IJCAI 2003 Workshop on Intelligent Techniques for Web Personalization (2003)Google Scholar
  81. 81.
    Pitkow, J., Pirolli, P.: Mining longest repeating subsequences to predict world wide web surfing. In: Proceedings of Second USENIX Symposium on Internet Technologies and Systems (1999)Google Scholar
  82. 82.
    Deshpande, M., Karypis, G.: Selective markov models for predicting web-page accesses. In: Proceedings SIAM International Conference on Data Mining (2000)Google Scholar
  83. 83.
    Aggarwal, C.C., Wolf, J.L., Wu, K., Yu, P.: Horting hatches an egg: A new graph-theoretic approach to collaborative filtering. In: Proceedings of the ACM KDD Conference, pp. 201–212 (1999)Google Scholar
  84. 84.
    Mirza, B.J., Keller, B.J., Ramakrishnan, N.: Studying recommendation algorithms by graph analysis. Journal of Intelligent Information Systems 20, 131–160 (2003)CrossRefGoogle Scholar
  85. 85.
    Mirza, B.J.: Jumping connections: A graph theoretic model for recommender systems. MSc Thesis, Virginia Tech. (2001)Google Scholar
  86. 86.
    Nakagawa, M., Mobahser, B.: A hybrid web personalization model based on site connectivity. In: Proceedings of the WebKDD Workshop at the ACM SIGKKDD International Conference on Knowledge Discovery and Data Mining (2003)Google Scholar
  87. 87.
    Burke, R.: Hybrid systems for personalized recommendations. In: Intelligent Techniques in Web Personalisation. LNCS (LNAI), Springer, Heidelberg (2005)Google Scholar
  88. 88.
    Smyth, B., Cotter, P.: A personlized television listing service. Communication of the ACM 43, 107–111 (2000)CrossRefGoogle Scholar
  89. 89.
    Massa, P., Avesani, P.: Trust-aware collaborative filtering for recommender systems. In: Proceedings of International Conference on Cooperative Information Systems (2004)Google Scholar
  90. 90.
    Mobasher, B., Jin, X., Zhou, Y.: Semantically enhanced collaborative filtering on the web. In: Berendt, B., Hotho, A., Mladenič, D., van Someren, M., Spiliopoulou, M., Stumme, G. (eds.) EWMF 2003. LNCS (LNAI), vol. 3209, Springer, Heidelberg (2004)Google Scholar
  91. 91.
    Cohen, W.: Fast effective rule induction. In: Proceedings of the 12th International Conference on Machine Learning (1995)Google Scholar
  92. 92.
    Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval 4, 133–151 (2001)CrossRefMATHGoogle Scholar
  93. 93.
    Yu, K., Xu, X., Ester, M., Kriegel, H.P.: Feature weighting and instance selection for collaborative filtering: An information-theoretic approach. Knowledge and Information Systems 5 (2003)Google Scholar
  94. 94.
    Chee, S.H.S., Han, J., Wang, K.: Rectree: An efficient collaborative filtering method. In: Carrol, J.M. (ed.) Proceedings of the Third International Conference on Data Warehousing and Knowledge Discovery. LNCS, vol. 2114, pp. 141–151. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  95. 95.
    Pryor, M.H.: The effect of singular value decomposition on collaborative filtering. Dartmouth College, Computer Science Technical Report PCS-TR98-338 (1998)Google Scholar
  96. 96.
    Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Incremental svd-based algorithms for highly scaleable recommender systems. In: Proceedings of the Fifth International Conference on Computer and Information Technology, pp. 345–354 (2002)Google Scholar
  97. 97.
    Brand, M.: Fast online svd revisions for lightweight recommender systems. In: Proceedings of the 3rd SIAM International Conference on Data Mining (2003)Google Scholar
  98. 98.
    Tang, T., Winoto, P., Chan, K.C.C.: Scaling down candidate sets based on the temporal feature of items for improved hybrid recommendations. In: Intelligent Techniques in Web Personalisation. LNCS, pp. 169–186. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  99. 99.
    Volokh, E.: Personalization and privacy. Communication of the ACM 43, 84–88 (2000)CrossRefGoogle Scholar
  100. 100.
    Canny, J.: Collaborative filtering with privacy. In: Proceedings of the IEEE Security and Privacy Conference, pp. 45–57 (2002)Google Scholar
  101. 101.
    Ramakrishnan, N., Keller, B.J., Mirza, B.J., Grama, A.Y., Karypis, G.: Privacy risks in recommender systems. IEEE Internet Computing, 54–62 (2001)Google Scholar
  102. 102.
    Ziegler, C., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th international conference on World Wide Web, pp. 22–32 (2005)Google Scholar
  103. 103.
    Smyth, B., McClave, P.: Similarity vs diversity. In: Proceedings of the 4th International Conference on Case-Based Reasoning: Case-Based Reasoning Research and Development, pp. 347–361 (2001)Google Scholar
  104. 104.
    Sheth, B.: A learning approach to personlized information filtering. Masters Thesis, Massachusetts Institute of Technology (1994)Google Scholar
  105. 105.
    Lieberman, H., Selker, T.: Out of context: Computer systems that adapt to, and learn from, context. IBM Systems Journal 39, 617–632 (2000)CrossRefGoogle Scholar
  106. 106.
    Allan, J., Aslam, J., Belkin, N., Buckley, C., Callan, J., Croft, B., Dumais, S., Fuhr, N., Harman, D., Harper, D.J., Hiemstra, D., Hofmann, T., Hovy, E., Kraaij, W., Lafferty, J., Lavrenko, V., Lewis, D., Liddy, L., Manmatha, R., McCallum, A., Ponte, J., Prager, J., Radev, D., Resnik, P., Robertson, S., Rosenfeld, R., Roukos, S., Sanderson, M., Shwartz, R., Singhal, A., Smeaton, A., Turtle, H., Voorhees, E., Weischedel, R., Xu, J., Zhai, C.: Challenges in information retrieval and language modelling: Report of a workshop held in the centre for intelligent information retrieval. ACM SIGIR Forum 37, 31–47 (2002)CrossRefGoogle Scholar
  107. 107.
    Dai, H., Mobasher, B.: A road map to more effective web personalization: Integrating domain knowledge with web usage mining. In: Proceedings of the International Conference on Internet Computing, pp. 58–64 (2003)Google Scholar
  108. 108.
    Cho, Y., Kim, J.: Application of web usage mining and product taxonomy to collaborative recommendations in e-commerce. Expert Systems with Applications 26, 233–246 (2004)CrossRefGoogle Scholar
  109. 109.
    Niu, L., Yan, X., Zhang, C., Zhang, S.: Product hierarchy-based customer profiles for electronic commerce recommendation. In: Proceedings of the 1st International Conference on Machine Learning and Cybernetics, pp. 1075–1080 (2002)Google Scholar
  110. 110.
    Billsus, D., Pazzani, M.J.: User modeling for adaptive news access. User Modelling and User-Adapted Interaction 10, 147–180 (2000)CrossRefGoogle Scholar
  111. 111.
    McCallum, A., Nigam, K.: A comparison of event models for naïve bayes text classification. In: AAAI/ICML 1998 Workshop on Learning for Text Categorization, Technical Report WS-98-05. AAAI Press, Menlo Park (1998)Google Scholar
  112. 112.
    Koychev, I., Schwab, I.: Adapting to drifting user’s interests. In: Proceedings of ECML2000/MLNet workshop on Machine Learning in the New Information Age (2000)Google Scholar
  113. 113.
    Moukas, A., Zacharia, G.: Evolving a multi-agent information filtering solution in amalthaea. In: Proceedings of the First International Conference on Autonomous Agents, pp. 394–403 (1997)Google Scholar
  114. 114.
    Wikipedia: The free encyclopedia (2000), http://en.wikipedia.org/wiki/Main_Page
  115. 115.
    Lam, S., Reidl, J.: Shilling recommender systems for fun and profit. In: Proceedings of the 13th International WWW Conference, New York (2004)Google Scholar
  116. 116.
    Burke, R., Mobasher, B., Zabicki, R., Bhaumik, R.: Identifying attack models for secure recommendation. In: Beyond Personalization: A Workshop on the Next Generation of Recommender Systems, San Diego, California (2005)Google Scholar
  117. 117.
    Burke, R., Mobasher, B., Bhaumik, R.: Limited knowledge shilling attacks in collaborative filtering systems. In: Proceedings of the 3rd IJCAI Workshop in Intelligent Techniques for Personalization, Edinburgh, Scotland (2005)Google Scholar
  118. 118.
    O’Mahony, M., Hurley, N., Kushmerick, N., Silvestre, G.: Collaborative recommendation: A robustness analysis. ACM Transactions on Internet Technology 4, 344–377 (2004)CrossRefGoogle Scholar
  119. 119.
    Mahony, M.O., Hurley, N., Kushmerick, N., Silverstre, G.: Collaborative recommendations: A robustness analysis. ACM Transactions on Internet Technologies 4, 344–377 (2004)CrossRefGoogle Scholar
  120. 120.
    Mobasher, B., Burke, R., Bhaumik, R., Williams, C.: Effective attack models for shilling item-based collaborative filtering systems. In: Proceedings of the WebKDD 2005 Workshop, in conjunction with the ACM SIGKKDD 2005, Chicago (2005)Google Scholar
  121. 121.
    Massa, P., Bhattacharjee, B.: Using trust in recommender systems: an experimental analysis. In: Proceedings of the 2nd International Conference on Trust Management (2004)Google Scholar
  122. 122.
    Donovan, J.O., Smyth, B.: Trust in recommender systems. In: Proceedings of the 10th international conference on Intelligent user interfaces, pp. 167–174 (2005)Google Scholar
  123. 123.
    Herlocker, J., Konstan, J., Riedl, J.: Explaining collaborative filtering recommendations. In: Proceedings of ACM 2000 Conference on Computer Supported Cooperative Work, pp. 241–250 (2000)Google Scholar
  124. 124.
    Cosley, D., Lam, S.K., Albert, I., Konstan, J.A., Riedl, J.: Is seeing believing? how recommender interfaces affect users’ opinions. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 585–592 (2003)Google Scholar
  125. 125.
    Swearingen, K., Sinha, R.: Beyond algorithms: An hci perspective on recommender systems. In: Proceedings of the ACM SIGIR Workshop on Recommender Systems (2001)Google Scholar
  126. 126.
    Sinha, R., Swearingen, K.: The role of transaprency in recommender systems. In: CHI 2002 extended abstracts on Human factors in computing systems, pp. 830–831 (2002)Google Scholar
  127. 127.
    Smeaton, A., Murphy, N., O’Connor, N.E., Marlow, S., Lee, H., McDonald, K., Browne, P., Ye, J.: The físchlár digital video system: a digital library of broadcast tv programmes. In: Proceedings of the 1st ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 312–313 (2001)Google Scholar
  128. 128.
    Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In: Proceedings of the tenth International conference on Information and knowledge management, pp. 247–254 (2001)Google Scholar
  129. 129.
    Billsus, D.: Pazzani, M.J.: Learning collaborative information filters. In: Proceedings of ICML, pp. 46–53 (1998)Google Scholar
  130. 130.
    Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Discovery and evaluation of aggregate usage profiles for web personalization. Data Mining and Knowledge Discovery 6, 61–82 (2002)MathSciNetCrossRefGoogle Scholar
  131. 131.
    Basu, C., Hirsh, H., Cohen, W.: Recommendation as classification: Using social and content-based information in recommendation. In: Proceedings of the Recommender System Workshop, pp. 11–15 (1998)Google Scholar
  132. 132.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems 22, 5–53 (2004)CrossRefGoogle Scholar
  133. 133.
    Anderson, C., Domingos, P., Weld, D.: Adaptive web navigation for wireless devices. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence, pp. 879–884 (2001)Google Scholar
  134. 134.
    Wilson, D., Martinez, T.R.: Reduction techniques for instance-based learning algorithms. Machine Learning 38, 257–286 (1997)CrossRefMATHGoogle Scholar
  135. 135.
    Daelemans, W., van den Bosch, A., Weijters, T.: Igtree: Using trees for compression and classification in lazy learning algorithms. Artificial Intelligence Review 11, 407–423 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sarabjot Singh Anand
    • 1
  • Bamshad Mobasher
    • 2
  1. 1.Department of Computer ScienceUniversity of WarwickCoventryUK
  2. 2.Center for Web Intelligence, School of Computer Science, Telecommunications and Information SystemsDePaul UniversityChicagoUSA

Personalised recommendations