Irradiation Orientation from Obliquely Viewed Texture

  • Sylvia C. Pont
  • Jan J. Koenderink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3753)


We studied image texture due to the shading of corrugated (3D textured) surfaces, which are Lambertian on the micro scale. Our theory applies to physically canonical cases of isotropic Gaussian random surfaces, under collimated illumination. In this investigation we analyze effects of oblique viewing, extending our theory which applied to normal viewing conditions only [5]. The theory for normal views predicts the structure tensors from either the gradient or the Hessian of the image intensity and allows for inferences of the orientation of irradiation of the surface. Even for surfaces that are not at all Gaussian, the BRDF [10] far from Lambertian, with vignetting and multiple scattering present, such inferences of the orientation of irradiation were accurate up to a few degrees. In this paper we derive predictions for oblique viewing conditions, for which the inferences of the irradiation orientation will deviate from the veridical value in a systematic manner, depending on the viewing and illumination directions. Theoretical predictions are compared with empirical data, for rendered and for real rough surfaces, and found to be in good agreement. We discuss issues of scale selection and robustness.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berry, M.V., Hannay, J.H.: Umbilic points on Gaussian random surfaces. J. Phys. A: Math. Gen. 10, 1809–1821 (1977)CrossRefGoogle Scholar
  2. 2.
    Chantler, M., Schmidt, M., Petrou, M., McGunnigle, G.: The effect of illuminant rotation on texture filters: Lissajous’s ellipses. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 289–303. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Columbia–Utrecht Reflectance and Texture Database,
  4. 4.
    Knill, D.C.: Estimating illuminant direction and degree of surface relief. JOSA A 7, 759–775 (1990)CrossRefGoogle Scholar
  5. 5.
    Koenderink, J.J., Pont, S.C.: Irradiation direction from texture. JOSA A 20(10), 1875–1882 (2003)CrossRefGoogle Scholar
  6. 6.
    Koenderink, J.J., van Doorn, A.J., Kappers, A.M.L., te Pas, S.F., Pont, S.C.: Illumination direction from texture shading. JOSA A 20(6), 987–995 (2003)CrossRefGoogle Scholar
  7. 7.
    Lambert, J.H.: Photometria Sive de Mensure de Gradibus Luminis, Colorum et Umbræ. Eberhard Klett, Augsburg (1760)Google Scholar
  8. 8.
    Lee, C.H., Rosenfeld, A.: Improved methods of estimating shape from shading using the light source coordinate system. Artif.Intell. 26, 125–143 (1985)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Longuet-Higgins, M.S.: The statistical analysis of a random moving surface. Phil. Trans. R. Soc. A 249, 321–364 (1956)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Nicodemus, F.E., Richmond, J.C., Hsia, J.J.: Geometrical Considerations and Nomenclature for Reflectance, Natl. Bur. Stand., U.S., Monogr. 160 (1977)Google Scholar
  11. 11.
    Pont, S.C., Koenderink, J.J.: Surface illuminance flow. In: Second International Symposium on 3D data Processing, Visualization and Transmission (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sylvia C. Pont
    • 1
  • Jan J. Koenderink
    • 1
  1. 1.Helmholtz InstituteUtrecht University 

Personalised recommendations