Advertisement

Abstract

Object-role Modeling (ORM) is a fact-oriented modeling approach for specifying, transforming, and querying information at a conceptual level. Unlike Entity-Relationship modeling and Unified Modeling Language class diagrams, fact-oriented modeling is attribute-free, treating all elementary facts as relationships. For information modeling, fact-oriented graphical notations are typically far more expressive than other notations. Introduced 30 years ago, ORM has evolved into closely related dialects, and is supported by industrial and academic tools. Industrial experience has identified ways to improve current ORM languages (graphical and textual) and associated tools. A project is now under way to provide tool support for a second generation ORM (called ORM 2), that has significant advances over current ORM technology. This paper provides an overview of, and motivation for, the enhancements introduced by ORM 2, and discusses an open-source ORM 2 tool under development.

Keywords

Unify Modeling Language Object Type Object Constraint Language Uniqueness Constraint Business Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bakema, G., Zwart, J., van der Lek, H.: Fully Communication Oriented NIAM. In: Nijssen, G.M., Sharp, J. (eds.) NIAM-ISDM 1994 Conf. Working Papers, Albuquerque, NM, pp. L1–35 (1994)Google Scholar
  2. 2.
    Bakema, G., Zwart, J., van der Lek, H.: Fully Communication Oriented Information Modelling. Ten Hagen Stam, The Netherlands (2000)Google Scholar
  3. 3.
    Bird, L., Goodchild, A., Halpin, T.A.: Object Role Modeling and XML Schema. In: Laender, A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920, pp. 309–322. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Bloesch, A., Halpin, T.: Conceptual queries using ConQuer-II. In: Embley, D.W. (ed.) ER 1997. LNCS, vol. 1331, pp. 113–126. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    CaseTalk website: http://www.casetalk.com/php/
  6. 6.
    Chen, P.P.: The entity-relationship model—towards a unified view of data. ACM Transactions on Database Systems 1(1), 9–36 (1976)CrossRefGoogle Scholar
  7. 7.
    Cuyler, D., Halpin, T.: Two Meta-Models for Object-Role Modeling. In: Krogstie, J., Halpin, T., Siau, K. (eds.) Information Modeling Methods and Methodologies, pp. 17–42. Idea Publishing Group, Hershey PA (2005)Google Scholar
  8. 8.
    Demey, J., Jarrar, M., Meersman, R.: A Markup Language for ORM Business Rules. In: Schroeder, M., Wagner, G. (eds.) Proc. International Workshop on Rule Markup Languages for Business Rules on the Semantic Web (RuleML-ISWC 2002 workshop), pp. 107–128 (2002), online at http://www.starlab.vub.ac.be/publications/STARpublications.htm
  9. 9.
    De Troyer, O., Meersman, R.: A Logic Framework for a Semantics of Object Oriented Data Modeling. In: Papazoglou, M.P. (ed.) ER 1995 and OOER 1995. LNCS, vol. 1021, pp. 238–249. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Embley, D.W.: Object Database Management. Addison-Wesley, Reading (1998)Google Scholar
  12. 12.
    Falkenberg, E.D.: Concepts for modelling information. In: Nijssen, G.M. (ed.) Proc 1976 IFIP Working Conf on Modelling in Data Base Management Systems, Freudenstadt, Germany, pp. 95–109. North-Holland Publishing, Amsterdam (1976)Google Scholar
  13. 13.
    Halpin, T.: A Logical Analysis of Information Systems: static aspects of the data oriented perspective. doctoral dissertation, University of Queensland (1989)Google Scholar
  14. 14.
    Halpin, T.: ORM/NIAM Object-Role Modeling. In: Bernus, P., Mertins, K., Schmidt, G. (eds.) Handbook on Information Systems Architectures, pp. 81–101. Springer, Berlin (1998)CrossRefGoogle Scholar
  15. 15.
    Halpin, T.: Information Modeling and Relational Databases. Morgan Kaufmann, San Francisco (2001)Google Scholar
  16. 16.
    Halpin, T.: Uniqueness Constraints on Objectified Associations. Journal of Conceptual Modeling (October 2003), www.orm.net/pdf/JCM2003Oct.pdf
  17. 17.
    Halpin, T.: Comparing Metamodels for ER, ORM and UML Data Models. In: Siau, K. (ed.) Advanced Topics in Database Research, vol. 3, ch. II, pp. 23–44. Idea Publishing Group, Hershey PA (2004)Google Scholar
  18. 18.
    Halpin, T.: Information Modeling and Higher-Order Types. In: Grundspenkis, J., Kirkova, M. (eds.) Proc. CAiSE 2004 Workshops, vol. 1, pp. 233–248. Riga Tech. University (2004), Online at http://www.orm.net/pdf/EMMSAD2004.pdf
  19. 19.
    Halpin, T.: Business Rule Verbalization, Information Systems Technology and its Applications. In: Doroshenko, A., Halpin, T., Liddle, S., Mayr, H. (eds.) Proc. ISTA 2004. Lec. Notes in Informatics, vol. P-48, pp. 39–52. Salt Lake City (2004)Google Scholar
  20. 20.
    Halpin, T.: Constraints on Conceptual Join Paths. In: Krogstie, J., Halpin, T., Siau, T.A.K. (eds.) Information Modeling Methods and Methodologies, pp. 258–277. Idea Publishing Group, Hershey PA (2005)Google Scholar
  21. 21.
    Halpin, T.: Verbalizing Business Rules: Part 11. Business Rules Journal 6(6) (2005), http://www.BRCommunity.com/a2005/b238.html
  22. 22.
    Halpin, T.: Objectification. In: Calestro, J., Teniente, E. (eds.) Proc. CAiSE 2005 Workshops. FEUP Porto, vol. 1, pp. 519–531 (June 2005)Google Scholar
  23. 23.
    Halpin, T., Evans, K., Hallock, P., MacLean, W.: Database Modeling with Microsoft® Visio for Enterprise Architects. Morgan Kaufmann, San Francisco (2003)Google Scholar
  24. 24.
    Halpin, T., Proper, H.: Database schema transformation and optimization. In: Papazoglou, M.P. (ed.) ER 1995 and OOER 1995. LNCS, vol. 1021, pp. 191–203. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  25. 25.
    Halpin, T., Wagner, G.: Modeling Reactive Behavior in ORM. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 567–569. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    ter Hofstede, A.H.M., Proper, H.A., van der Weide, t.P.: Formal definition of a conceptual language for the description and manipulation of information models. Information Systems 18(7), 489–523 (1993)CrossRefGoogle Scholar
  27. 27.
    ter Hofstede, A.H.M., van der Weide, t.P.: Expressiveness in conceptual data modeling. Data and Knowledge Engineering 10(1), 65–100 (1993)zbMATHCrossRefGoogle Scholar
  28. 28.
  29. 29.
    Lyons, J.: Linguistic Semantics: An Introduction. Cambridge University Press, Cambridge (1995)Google Scholar
  30. 30.
    Meersman, R.M.: The RIDL conceptual language. Research report, Int. Centre for Information Analysis Services, Control Data Belgium, Brussels (1982)Google Scholar
  31. 31.
    Object Management Group (2003), UML 2.0 Infrastructure Specification. Online: www.omg.org/uml
  32. 32.
    Object Management Group (2003), UML 2.0 Superstructure Specification. Online: www.omg.org/uml
  33. 33.
    Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Language Reference Manual. Addison-Wesley, Reading (1999)Google Scholar
  34. 34.
  35. 35.
    Warmer, J., Kleppe, A.: The Object Constraint Language: precise modeling with UML. Addison-Wesley, Reading (1999)Google Scholar
  36. 36.
    Wintraecken, J.: The NIAM Information Analysis Method: Theory and Practice. Kluwer, Deventer (1990)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Terry Halpin
    • 1
  1. 1.Neumont UniversitySalt Lake CityUSA

Personalised recommendations