Advertisement

QoS-Aware Composition of Web Services: An Evaluation of Selection Algorithms

  • Michael C. Jaeger
  • Gero Mühl
  • Sebastian Golze
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3760)

Abstract

A composition arranges available services resulting in a defined flow of executions. Before the composition is carried out, a discovery service identifies candidate services. Then, a selection process chooses the optimal candidates. This paper discusses how the selection can consider different Quality-of-Service (QoS) categories as selection criteria to select the most suitable candidates for the composition. If more than one category is used for optimisation, a multi-dimensional optimisation problem arises which results in an exponential computation effort for computing an optimal solution. We explain the problem and point out similarities to other combinatorial problems – the knapsack problem and the resource constraint project scheduling problem (RCPSP). Based on this discussion, we describe possible heuristics for these problems and evaluate their efficiency when used for web service candidate selection.

Keywords

Execution Time Selection Problem Knapsack Problem Parallel Arrangement Project Schedule Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benatallah, B., Dumas, M., Fauvet, M.-C., Rabhi, F.A.: Towards Patterns of Web Services Composition. Technical Report UNSW-CSE-TR-0111, University of New South Wales (2001)Google Scholar
  2. 2.
    Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D.: Web Services Architecture (February 2004), http://www.w3c.org/TR/ws-arch/
  3. 3.
    Cardoso, J.: Quality of Service and Semantic Composition of Workflows. PhD thesis, Department of Computer Science, University of Georgia, Athens, GA, USA (2002)Google Scholar
  4. 4.
    Gronmo, R., Jaeger, M.C.: Model-Driven Methodology for Building QoS-Optimised Web Service Compositions. In: Kutvonen, L., Alonistioti, N. (eds.) DAIS 2005. LNCS, vol. 3543, pp. 68–82. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Hull, R., Benedikt, M., Christophides, V., Su, J.: E-Services: A Look Behind the Curtain. In: Proceedings of the 22nd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 2003), San Diego, USA, June 2003. ACM Press, New York (2003)Google Scholar
  6. 6.
    Hwang, C.-L., Yoon, K.P. (eds.): Multiple Attribute Decision Making: Methods and Applications, March 1981. Lecture Notes in Economics and Mathematical Systems, vol. 186. Springer, Heidelberg (1981)zbMATHGoogle Scholar
  7. 7.
    ISO/IEC. ITU.TS Recommendation X.950 | ISO/IEC 13235-1: Trading Function: Specification (August 1997)Google Scholar
  8. 8.
    Jaeger, M.C., Rojec-Goldmann, G., Mühl, G.: QoS Aggregation for Service Composition using Workflow Patterns. In: Proceedings of the 8th International Enterprise Distributed Object Computing Conference (EDOC 2004), Monterey, California, September 2004, pp. 149–159. IEEE Press, Los Alamitos (2004)CrossRefGoogle Scholar
  9. 9.
    Jaeger, M.C., Rojec-Goldmann, G., Mühl, G.: QoS Aggregation in Web Service Compositions. In: The 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE 2005), Hong Kong, China, March 2005, pp. 181–185. IEEE Press, Los Alamitos (2005)CrossRefGoogle Scholar
  10. 10.
    Menasce, D.A.: QoS Issues in Web Services. In: IEEE Internet Computing, November-December 2002, pp. 72–75. IEEE Press, Los Alamitos (2002)Google Scholar
  11. 11.
    Puschner, P., Schedl, A.: Computing Maximum Task Execution Times - A Graph-Based Approach. Journal of Real-Time Systems 13(1), 67–91 (1997)CrossRefGoogle Scholar
  12. 12.
    Tosic, V., Patel, K., Pagurek, B.: WSOL – Web Service Offerings Language. In: Bussler, C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B., Yang, J. (eds.) CAiSE 2002 and WES 2002. LNCS, vol. 2512, pp. 57–67. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    UDDI Spec Technical Committee. UDDI Version 3.0.1 (2003), http://uddi.org/pubs/uddi-v3.0.1-20031014.pdf
  14. 14.
    van der Aalst, W.M.P.: Don’t go with the flow: Web services composition standards exposed. Jan/Feb 2003 Issue of IEEE Intelligent Systems, 72–76 (January 2003)Google Scholar
  15. 15.
    van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Patterns. Distributed and Parallel Databases 14(3), 5–51 (2003)CrossRefGoogle Scholar
  16. 16.
    Yang, B., Geunes, J., O’Brien, W.J.: Resource Constrained Project Scheduling; Past Work and New Directions. Technical Report Research Report 2001-6, Department of Industrial and Systems Engineering, University of Florida (2001)Google Scholar
  17. 17.
    Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware Middleware for Web Services Composition. IEEE Transactions on Software Transactions 30(5), 311–327 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michael C. Jaeger
    • 1
  • Gero Mühl
    • 1
  • Sebastian Golze
    • 1
  1. 1.Institute of Telecommunication SystemsTechn. Universität BerlinBerlinGermany

Personalised recommendations