RDF Entailment as a Graph Homomorphism

  • Jean-François Baget
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3729)


Semantic consequence (entailment) in RDF is ususally computed using Pat Hayes Interpolation Lemma. In this paper, we reformulate this mechanism as a graph homomorphism known as projection in the conceptual graphs community.

Though most of the paper is devoted to a detailed proof of this result, we discuss the immediate benefits of this reformulation: it is now easy to translate results from different communities (e.g. conceptual graphs, constraint programming, ...) to obtain new polynomial cases for the NP-complete RDF entailment problem, as well as numerous algorithmic optimizations.


  1. 1.
    Hayes, P.: RDF Semantics. W3C Recommendation (2004),
  2. 2.
    ter Horst, H.J.: Extending the RDFS Entailment Lemma. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 77–91. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Hahn, G., Tardif, C.: Graph homomorphisms: structure and symmetry. Graph Symmetry. NATO Adv. Sci. Inst. Ser. C. Math. Phys. Sci. 497, 107–166 (1997)MathSciNetGoogle Scholar
  4. 4.
    Chein, M., Mugnier, M.L.: Conceptual Graphs: fundamental notions. Revue d’Intelligence Artificielle 6, 365–406 (1992)Google Scholar
  5. 5.
    Montanari, U.: Networks of Constraints: Fundamental Notions and Application to Picture Processing. Information Sciences 7, 95–132 (1974)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Corby, O., Dieng, R., Hebert, C.: A Conceptual Graph Model for W3C Resource Description Framework. In: International Conference on Conceptual Structures, pp. 468–482 (2000)Google Scholar
  7. 7.
    Baget, J.F.: Homomorphismes d’hypergraphes pour la subsomption en RDF/RDFS. In: 10e conférence sur langages et modèles à objets (LMO), vol. 10, pp. 203–216 (2004)Google Scholar
  8. 8.
    Genest, D.: Extensions du modèle des graphes conceptuels pour la recherche d’informations. PhD thesis, Université de Montpellier II (2000)Google Scholar
  9. 9.
    Hayes, J., Guttiérrez, C.: Bipartite Graphs as Intermediate Model for RDF. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 47–61. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Baget, J.F.: Simple conceptual graphs revisited: hypergraphs and conjunctive types for efficient projection algorithms. In: ISWC 2003. LNCS, vol. 2870, pp. 195–208. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Mugnier, M.L.: Knowledge Representation and Reasonings Based on Graph Homomorphism. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 172–192. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Mugnier, M.L., Chein, M.: Polynomial algorithms for projection and matching. In: Pfeiffer, H.D., Nagle, T.E. (eds.) Conceptual Structures: Theory and Implementation. LNCS (LNAI), vol. 754. Springer, Heidelberg (1993)Google Scholar
  13. 13.
    Freuder, E.: A sufficient condition for backtrack-free search. Journal of the ACM 29, 24–32 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural decomposition methods (1999)Google Scholar
  15. 15.
    Guinaldo, O., Haemmerlé, O.: Knowledge querying in the conceptual graphs model: the RAP module. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453, pp. 287–294. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jean-François Baget
    • 1
  1. 1.INRIA Rhône-AlpesSaint IsmierFrance

Personalised recommendations