Advertisement

Preferential Reasoning on a Web of Trust

  • Stijn Heymans
  • Davy Van Nieuwenborgh
  • Dirk Vermeir
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3729)

Abstract

We introduce a framework, based on logic programming, for preferential reasoning with agents on the Semantic Web. Initially, we encode the knowledge of an agent as a logic program equipped with call literals. Such call literals enable the agent to pose yes/no queries to arbitrary knowledge sources on the Semantic Web, without conditions on, e.g., the representation language of those sources. As conflicts may arise from reasoning with different knowledge sources, we use the extended answer set semantics, which can provide different strategies for solving those conflicts. Allowing, in addition, for an agent to express its preference for the satisfaction of certain rules over others, we can then induce a preference order on those strategies. However, since it is natural for an agent to believe its own knowledge (encoded in the program) but consider some sources more reliable than others, it can alternatively express preferences on call literals. Finally, we show how an agent can learn preferences on call literals if it is part of a web of trusted agents.

Keywords

Logic Program Logic Programming Description Logic Movie Theater Stable Model Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arisha, K., Eiter, T., Kraus, S., Ozcan, F., Ross, R., Subrahmanian, V.S.: IMPACT: Interactive Maryland Platform for Agents Collaborating Together. IEEE Intelligent Systems 14(2), 64–72 (1999)CrossRefGoogle Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  3. 3.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference (2004)Google Scholar
  5. 5.
    Van Belleghem, K., Denecker, M., De Schreye, D.: A Strong Correspondence between DLs and Open Logic Programming. In: Proc. of ICLP 1997, pp. 346–360 (1997)Google Scholar
  6. 6.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic Programming. ACM Comput. Surv. 33(3), 374–425 (2001)CrossRefGoogle Scholar
  7. 7.
    Ding, L., Zhou, L., Finin, T.: Trust Based Knowledge Outsourcing for Semantic Web Agents. In: Proc. of the 2003 IEEE/WIC International Conference on Web Intelligence (2003)Google Scholar
  8. 8.
    Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating Datalog and Description Logics. J. of Intell. and Cooperative Information Systems 10, 227–252 (1998)Google Scholar
  9. 9.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Planning under Incomplete Knowledge. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 807–821. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Eiter, T., Gottlob, G., Veith, H.: Modular Logic Programming and Generalized Quantifiers. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 290–309. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set Programming with DLs for the Semantic Web. In: Proc. of KR 2004, pp. 141–151 (2004)Google Scholar
  12. 12.
    Eiter, T., Subrahmanian, V.S., Pick, G.: Heterogeneous Active Agents, I: Semantics. Artif. Intell. 108(1-2), 179–255 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Proc. of ICLP 1988, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  14. 14.
    Gil, Y., Ratnakar, V.: Trusting Information Sources One Citizen at a Time. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 162–176. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Golbeck, J., Hendler, J.: Inferring Reputation on the Semantic Web. In: Proc. of WWW 2004, ACM, New York (2004)Google Scholar
  16. 16.
    Golbeck, J., Parsia, B., Hendler, J.: Trust Networks on the Semantic Web. In: Proc. of Cooperative Intelligent Agents (2003)Google Scholar
  17. 17.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Combining Logic Programs with Description Logic. In: Proc. of WWW, pp. 48–57 (2003)Google Scholar
  18. 18.
    Hendler, J.: Agents and the Semantic Web. IEEE Intelligent Systems Journal 16(2) (2001)Google Scholar
  19. 19.
    Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Nonmonotonic Ontological and Rule-based Reasoning with Extended Conceptual Logic Programs. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 392–407. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Preferential Reasoning on a Web of Trust. Technical report, Vrije Universiteit Brussel, Dept. of Computer Science (2005), http://tinf2.vub.ac.be/~sheymans/tech/aspc-tech.ps.gz
  21. 21.
    Horrocks, I.: The FaCT system. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 307–312. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Horrocks, I., Patel-Schneider, P.: Reducing OWL Entailment to Description Logic Satisfiability. J. of Web Semantics 1(4), 345–357 (2004)Google Scholar
  23. 23.
    Hustadt, U., Motik, B., Sattler, U.: Reducing \(\mathcal{SHIQ}^{-}\) Description Logic to Disjunctive Datalog Programs. FZI-Report 1-8-11/03, Forschungszentrum Informatik, FZI (2003)Google Scholar
  24. 24.
    Lifschitz, V.: Answer Set Programming and Plan Generation. Journal of Artificial Intelligence 138(1-2), 39–54 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Motik, B., Volz, R., Maedche, A.: Optimizing Query Answering in Description Logics using disjunctive deductive databases. In: Proc. of KRDB 2003, pp. 39–50 (2003)Google Scholar
  26. 26.
    Van Nieuwenborgh, D., Heymans, S., Vermeir, D.: An Ordered Logic Program Solver. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS, vol. 3350, pp. 128–142. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)zbMATHGoogle Scholar
  28. 28.
    Richardson, M., Agrawal, R., Domingos, P.: Trust Management for the Semantic Web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  29. 29.
    Rosati, R.: Towards Expressive KR Systems Integrating Datalog and Description Logics: Preliminary Report. In: Proc. of DL 1999, pp. 160–164 (1999)Google Scholar
  30. 30.
    Van Nieuwenborgh, D., Vermeir, D.: Preferred Answer Sets for Ordered Logic Programs. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 432–443. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  31. 31.
    Wagner, M., Liebig, T., Noppens, O., Balzer, S., Kellerer, W.: Towards Semantic-based Service Discovery on Tiny Mobile DevicesGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stijn Heymans
    • 1
  • Davy Van Nieuwenborgh
    • 1
  • Dirk Vermeir
    • 1
  1. 1.Dept. of Computer ScienceVrije Universiteit Brussel, VUBBrusselsBelgium

Personalised recommendations