Seven Bottlenecks to Workflow Reuse and Repurposing

  • Antoon Goderis
  • Ulrike Sattler
  • Phillip Lord
  • Carole Goble
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3729)


To date on-line processes (i.e. workflows) built in e-Science have been the result of collaborative team efforts. As more of these workflows are built, scientists start sharing and reusing stand-alone compositions of services, or workflow fragments. They repurpose an existing workflow or workflow fragment by finding one that is close enough to be the basis of a new workflow for a different purpose, and making small changes to it. Such a “workflow by example” approach complements the popular view in the Semantic Web Services literature that on-line processes are constructed automatically from scratch, and could help bootstrap the Web of Science. Based on a comparison of e-Science middleware projects, this paper identifies seven bottlenecks to scalable reuse and repurposing. We include some thoughts on the applicability of using OWL for two bottlenecks: workflow fragment discovery and the ranking of fragments.


Description Logic Service Discovery Composite Service Williams Beuren Syndrome Cooperative Information System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hey, T., Trefethen, A.: The uk e-science core program and the grid. In: Int. Conf. on Computational Science, vol. 1, pp. 3–21 (2002)Google Scholar
  2. 2.
    Stevens, R., Tipney, H., Wroe, C., et al.: Exploring Williams Beuren Syndrome Using myGrid. Bioinformatics 20, 303–310 (2004)CrossRefGoogle Scholar
  3. 3.
    Hendler, J.: Science and the semantic web. Science (January 23, 2003)Google Scholar
  4. 4.
    Horrocks, I., Patel-Schneider, P., van Harmelen, F.: From \(\mathcal{SHIQ}\) and RDF to OWL: the making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)Google Scholar
  5. 5.
    van Harmelen, F.: How the semantic web will change kr: challenges and opportunities for a new research agenda. The Knowl. Eng. Review 17(1) (2002)Google Scholar
  6. 6.
    King, R., Whelan, K., Jones, F., et al.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427(6971) (2004)Google Scholar
  7. 7.
    Hull, R., Benedikt, M., Christophides, V., Su, J.: E-services: a look behind the curtain. In: 22nd Symposium on Principles of database systems PODS (2003)Google Scholar
  8. 8.
    Wroe, C., Stevens, R., Goble, C., Roberts, A., Greenwood, M.: A suite of daml+oil ontologies to describe bioinformatics web services and data. Intl. J. of Cooperative Information Systems 12(2), 197–224 (2003)CrossRefGoogle Scholar
  9. 9.
    Berardi, D., De Giacomo, G., Lenzerini, M., Mecella, M., Calvanese, D.: Synthesis of underspecified composite e-services based on automated reasoning. In: 2nd Int. Conf. on Service Oriented Computing ICSOC, pp. 105–114 (2004)Google Scholar
  10. 10.
    Wombacher, A., Fankhauser, P., Mahleko, B., et al.: Matchmaking for business processes based on choreographies. Int. J. of Web Services 1(4) (2004)Google Scholar
  11. 11.
    Lee, E.: Overview of the ptolemy project. Technical Memorandum UCB/ERL M03/25, University of California, Berkeley (July 2, 2003)Google Scholar
  12. 12.
    ten Teije, A., van Harmelen, F., Wielinga, B.: Configuration of web services as parametric design. In: Motta, E., Shadbolt, N.R., Stutt, A., Gibbins, N. (eds.) EKAW 2004. LNCS (LNAI), vol. 3257, pp. 321–336. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE TKDE 16(9), 1128–1142 (2004)Google Scholar
  14. 14.
    Lord, P., Bechhofer, S., Wilkinson, M., et al.: Applying semantic web services to bioinformatics: Experiences gained, lessons learnt. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 350–364. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Deelman, E., Blythe, J., Gil, Y., et al.: Mapping abstract complex workflows onto grid environments. Journal of Grid Computing 1(1) (2003)Google Scholar
  16. 16.
    van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)CrossRefGoogle Scholar
  17. 17.
    Goderis, A., Sattler, U., Goble, C.: Applying descriptions logics for workflow reuse and repurposing. In: DL workshop (2005)Google Scholar
  18. 18.
    Al Sairaf, S., Emmanouil, F.S., Ghanem, M., et al.: The design of discovery net: Towards open grid services for knowledge discovery. Int. J. of High Performance Computing Applications (2003)Google Scholar
  19. 19.
    Tao, F., Chen, L., Shadbolt, N., et al.: Semantic web based content enrichment and knowledge reuse in e-science. In: CoopIS/DOA/ODBASE, pp. 654–669 (2004)Google Scholar
  20. 20.
    Majithia, S., Walker, D., Gray, W.: Automated web service composition using semantic web technologies. In: Int.l Conf. on Autonomic Computing (2004)Google Scholar
  21. 21.
    Altintas, I., Berkley, C., Jaeger, E., et al.: Kepler: An extensible system for design and execution of scientific workflows. In: 16th Intl. Conf. on Scientific and Statistical Database Management, SSDBM (2004)Google Scholar
  22. 22.
    Li, P., Hayward, K., Jennings, C., et al.: Association of variations in I kappa B-epsilon with Graves’ disease using classical methodologies and myGrid methodologies. In: UK e-Science All Hands Meeting (2004)Google Scholar
  23. 23.
    Joeris, G., Herzog, O.: Managing evolving workflow specifications. In: 3rd Int. Conf. on Cooperative Information Systems (CoopIS 1998), pp. 310–319 (1998)Google Scholar
  24. 24.
    Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, interaction and composition of semantic web services. Web Semantics: Science, Services and Agents on the WWW 1(1), 27–46 (2003)CrossRefGoogle Scholar
  25. 25.
    Keller, U., Lara, R., Polleres, A., et al.: Wsmo web service discovery. WSML Working Draft D5.1 v0.1, University of Innsbruck (2004)Google Scholar
  26. 26.
    Bechhofer, S., Goble, C.: Classification Based Navigation and Retrieval for Picture Archives. In: IFIP WG2.6 Conference on Data Semantics, DS8 (1999)Google Scholar
  27. 27.
    Cali, A., Calvanese, D., Colucci, S., et al.: A description logic based approach for matching user profiles. In: DL workshop 2004 (2004)Google Scholar
  28. 28.
    Colucci, S., Di Noia, T., Di Sciascio, E., et al.: A uniform tableaux-based approach to concept abduction and contraction in aln. In: DL workshop 2004 (2004)Google Scholar
  29. 29.
    Meghini, C., Sebastiani, F., Straccia, U., Thanos, C.: A model of ir based on a terminological logic. In: 116th ACM SIGIR, pp. 298–307 (1993)Google Scholar
  30. 30.
    Koller, D., Levy, A., Pfeffer, A.: P-classic: A tractable probabilistic description logic. In: AAAI 1997, pp. 390–397, Rhode Island (August 1997)Google Scholar
  31. 31.
    Brandt, S., Küsters, R., Turhan, A.-Y.: Approximation and difference in description logics. In: KR 2002, pp. 203–214, San Francisco, USA (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Antoon Goderis
    • 1
  • Ulrike Sattler
    • 1
  • Phillip Lord
    • 1
  • Carole Goble
    • 1
  1. 1.School of Computer ScienceUniversity of ManchesterUK

Personalised recommendations