A Strategy for Automated Meaning Negotiation in Distributed Information Retrieval

  • Vadim Ermolayev
  • Natalya Keberle
  • Wolf-Ekkehard Matzke
  • Vladimir Vladimirov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3729)


The paper reports on the development of the formal framework to design strategies for multi-issue non-symmetric meaning negotiations among software agents in a distributed information retrieval system. The advancements of the framework are the following. A resulting strategy compares the contexts of two background domain theories not concept by concept, but the whole context to the other context by accounting the relationships among concepts, the properties, the constraints over properties, and the available instances. It contains the mechanisms for measuring contextual similarity through assessing propositional substitutions and to provide argumentation through generating extra contexts. It uses presuppositions for choosing the best similarity hypotheses and to make the mutual concession to the common sense monotonic. It provides the means to evaluate the possible eagerness to concede through semantic commitments and related notions of knowledgeability and degree of reputation.


Multiagent System Software Agent Information Retrieval System Background Theory Negotiation Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wiederhold, G.: Mediators in the Architecture of Future Information Systems. IEEE Computer 25(3), 38–49 (1992)Google Scholar
  2. 2.
    Lomuscio, R., Wooldridge, M., Jennings, N.R.: A Classification Scheme for Negotiation in Electronic Commerce”. In: Dignum, F., Sierra, C. (eds.) Agent-Mediated Electronic Commerce: A European Perspective, pp. 19–33. Springer, Heidelberg (2000)Google Scholar
  3. 3.
    Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Sierra, C., Wooldridge, M.: Automated Negotiation: Prospects, Methods and Challenges. Int. J. of Group Decision and Negotiation 10(2), 199–215 (2001)CrossRefGoogle Scholar
  4. 4.
    Beam, C., Segev, A.: Automated Negotiations: A Survey of the State of the Art. CITM Working Paper 96-WP-1022 (1997),
  5. 5.
    Zhang, H., Bruce Kroft, W., Levine, B., Lesser, V.: A Multi-agent Approach for Peer-to-Peer-based Information Retrieval Systems. In: Kudenko, D., Kazakov, D., Alonso, E. (eds.) AAMAS 2004. LNCS (LNAI), vol. 3394, Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Ermolayev, V., Keberle, N., Kononenko, O., Plaksin, S., Terziyan, V.: Towards a framework for agent-enabled semantic web service composition. Int. J. of Web Services Research 1(3), 63–87 (2004)CrossRefGoogle Scholar
  7. 7.
    Beun, R.-J., van Eijk, R.M., Prüst, H.: Ontological Feedback in Multiagent Systems. In: Kudenko, D., Kazakov, D., Alonso, E. (eds.) AAMAS 2004. LNCS (LNAI), vol. 3394. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science. Int. Series of Monographs on Computer Science. Clarendon Press, Oxford (1994)zbMATHGoogle Scholar
  9. 9.
    Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to Match Ontologies on the Semantic Web. Int. J. Very Large Data Bases 12(4), 303–319 (2003)CrossRefGoogle Scholar
  10. 10.
    Weisberg, H.F.: American Political Science. Review 68, 1638–1655 (1974)Google Scholar
  11. 11.
    Tversky, A.: Features of Similarity. Psychological Review 84(4), 327–352 (1977)CrossRefGoogle Scholar
  12. 12.
    Bouquet, P., Magnini, B., Serafini, L., Zanobini, S.: A SAT-based Algorithm for Context Matching. Dept of Information and Communication Technology, Univ of Trento, T.R. # DIT-03-005 (January 2003)Google Scholar
  13. 13.
    Bergamaschi, S., Castano, S., De Capitani di Vimercati, S., Montanari, S., Vincini, M.: An Intelligent Approach to Information Integration. In: Proc. Int. Conf. on Formal Ontology in Information Systems (FOIS 1998) (June 1998)Google Scholar
  14. 14.
    Wache, H., et al.: Ontology-Based Integration of Information - A Survey of Existing Approaches. In: Gomez-Perez, A., Gruninger, M., Stuckenschmidt, H., Uschold, M. (eds.) Proc. of the IJCAI 2001 Workshop on Ontologies and Information Sharing, Seattle, USA, August 4-5, pp. 108–118 (2001)Google Scholar
  15. 15.
    Lin, D.: An Information-Theoretic Definition of Similarity. In: Proc. Int. Conf. on Machine Learning (1998)Google Scholar
  16. 16.
    Aleksovski, Z., ten Kate, W., van Harmelen, F.: Semantic Coordination: a New Approximation Method and its Application in the Music Domain. In: Proc. ISWC 2004 workshop on Meaning Coordination and Negotiation, Hiroshima, Japan, November 8 (2004)Google Scholar
  17. 17.
    Euzenat, J., et al.: State of the Art on Ontology Alignment. KnowledgeWeb project deliverable D2.2.3, v.1.2. August 2 (2004),

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Vadim Ermolayev
    • 1
  • Natalya Keberle
    • 1
  • Wolf-Ekkehard Matzke
    • 2
  • Vladimir Vladimirov
    • 1
  1. 1.Dept of ITZaporozhye National Univ.Ukraine
  2. 2.Cadence Design Systems, GmbHFeldkirchenGermany

Personalised recommendations