Bootstrapping Ontology Alignment Methods with APFEL

  • Marc Ehrig
  • Steffen Staab
  • York Sure
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3729)


Ontology alignment is a prerequisite in order to allow for interoperation between different ontologies and many alignment strategies have been proposed to facilitate the alignment task by (semi-)automatic means. Due to the complexity of the alignment task, manually defined methods for (semi-)automatic alignment rarely constitute an optimal configuration of substrategies from which they have been built. In fact, scrutinizing current ontology alignment methods, one may recognize that most are not optimized for given ontologies. Some few include machine learning for automating the task, but their optimization by machine learning means is mostly restricted to the extensional definition of ontology concepts. With APFEL (Alignment Process Feature Estimation and Learning) we present a machine learning approach that explores the user validation of initial alignments for optimizing alignment methods. The methods are based on extensional and intensional ontology definitions. Core to APFEL is the idea of a generic alignment process, the steps of which may be represented explicitly. APFEL then generates new hypotheses for what might be useful features and similarity assessments and weights them by machine learning approaches. APFEL compares favorably in our experiments to competing approaches.


Support Vector Machine Domain Ontology Alignment Method Alignment Process Similarity Assessment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agrawal, R., Srikant, R.: On integrating catalogs. In: Proceedings of the Tenth International Conference on the World Wide Web (WWW-10), pp. 603–612. ACM Press, New York (2001)CrossRefGoogle Scholar
  2. 2.
    Bouquet, P., Magnini, B., Serafini, L., Zanobini, S.: A SAT-based algorithm for context matching. In: Blackburn, P., Ghidini, C., Turner, R.M., Giunchiglia, F. (eds.) CONTEXT 2003. LNCS, vol. 2680. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall, Boca Raton (1994)zbMATHGoogle Scholar
  4. 4.
    Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: iMAP: discovering complex semantic matches between database schemas. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, Paris, France, June 2004, pp. 383–394 (2004)Google Scholar
  5. 5.
    Do, H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In: Proceedings of the Second International Workshop on Web Databases (German Informatics Society) (2002)Google Scholar
  6. 6.
    Do, H.-H., Rahm, E.: COMA - a system for flexible combination of schema matching approaches. In: Proceedings of the 28th VLDB Conference, Hong Kong, China (2002)Google Scholar
  7. 7.
    Doan, A., Domingos, P., Halevy, A.: Learning to match the schemas of data sources: A multistrategy approach. VLDB Journal 50, 279–301 (2003)zbMATHGoogle Scholar
  8. 8.
    Doan, A., Halevy, A.Y.: Semantic-integration research in the database community. AI Magazine, 83–94 (March 2005)Google Scholar
  9. 9.
    Doan, A., Lu, Y., Lee, Y., Han, J.: Object matching for data integration: A profile-based approach. In: Mobasher, B., Anand, S.S. (eds.) ITWP 2003. LNCS (LNAI), vol. 3169, Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Ehrig, M., Staab, S.: QOM- quick ontology mapping. In: van Harmelen, F., McIlraith, S., Plexousakis, D. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 683–696. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Ehrig, M., Sure, Y.: Ontology mapping - an integrated approach. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 76–91. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in owl-lite. In: Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain, August 2004, pp. 333–337 (2004)Google Scholar
  13. 13.
    Haase, P., et al.: Bibster - a semantics-based bibliographic peer-to-peer system. In: van Harmelen, F., McIlraith, S., Plexousakis, D. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 122–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-description logic to disjunctive datalog programs. In: Proceedings of Ninth International Conference on Knowledge Representation and Reasoning 2004, Whistler, Canada, June 2004, pp. 152–162 (2004)Google Scholar
  15. 15.
    Klein, M.: Combining and relating ontologies: an analysis of problems and solutions. In: Gomez-Perez, A., Gruninger, M., Stuckenschmidt, H., Uschold, M. (eds.) Workshop on Ontologies and Information Sharing, IJCAI 2001, Seattle, USA (2001)Google Scholar
  16. 16.
    Levenshtein, I.V.: Binary codes capable of correcting deletions, insertions, and reversals. Cybernetics and Control Theory (1966)Google Scholar
  17. 17.
    Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph matching algorithm and its application to schema matching. In: Proceedings of the 18th International Conference on Data Engineering (ICDE 2002), p. 117. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  18. 18.
    Mitra, P., Wiederhold, G., Kersten, M.: A graph-oriented model for articulation of ontology interdependencies. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, p. 86+. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Noy, N.F., Musen, M.A.: The PROMPT suite: interactive tools for ontology merging and mapping. International Journal of Human-Computer Studies 59(6), 983–1024 (2003)CrossRefGoogle Scholar
  20. 20.
    Stumme, G., et al.: The Karlsruhe view on ontologies. Technical report, University of Karlsruhe, Institute AIFB (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Marc Ehrig
    • 1
  • Steffen Staab
    • 2
  • York Sure
    • 1
  1. 1.Institute AIFBUniversity of Karlsruhe 
  2. 2.ISWebUniversity of Koblenz-Landau 

Personalised recommendations