Advertisement

Decentralized Case-Based Reasoning for the Semantic Web

  • Mathieu d’Aquin
  • Jean Lieber
  • Amedeo Napoli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3729)

Abstract

Decentralized case-based reasoning (DzCBR) is a reasoning framework that addresses the problem of adaptive reasoning in a multi-ontology environment. It is a case-based reasoning (CBR) approach which relies on contextualized ontologies in the C-OWL formalism for the representation of domain knowledge and adaptation knowledge. A context in C-OWL is used to represent a particular viewpoint, containing the knowledge needed to solve a particular local problem. Semantic relations between contexts and the associated reasoning mechanisms allow the CBR process in a particular viewpoint to reuse and share information about the problem and the already found solutions in the other viewpoints.

Keywords

Description Logic Target Problem Source Problem Internal Mammary Chain Ontology Alignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lenz, M., Bartsch-Spörl, B., Burkhard, H.D., Wess, S. (eds.): Case-Based Reasoning Technology. LNCS (LNAI), vol. 1400. Springer, Heidelberg (1998)Google Scholar
  2. 2.
    Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. Artificial Intelligence Communications 7, 39–59 (1994)Google Scholar
  3. 3.
    Aamodt, A.: Knowledge-Intensive Case-Based Reasoning in CREEK. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 1–15. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-Schneider, P., Stein, L.A.: OWL Web Ontology Language Reference. W3C Recommendation (2004)Google Scholar
  5. 5.
    Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: Contextualizing Ontologies. Journal of Web Semantics 1, 1–19 (2004)Google Scholar
  6. 6.
    Demazeau, Y., Müller, J.P.: Decentralized Artificial Intelligence. In: Demazeau, Y., Müller, J.P. (eds.) Decentralized A.I. – Proc. of the First European Workshop on Modelling Autonomous Agents in a Multi-Agent World, pp. 3–13. North-Holland, Amsterdam (1989)Google Scholar
  7. 7.
    Gómez-Albarrán, M., Gonzàles-Calero, P., Díaz-Agudo, B., Fernàndez-Conde, C.: Modelling the CBR Life Cycle Using Description Logics. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650, pp. 147–161. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Lieber, J., Napoli, A.: Correct and Complete Retrieval for Case-Based Problem-Solving. In: Prade, H. (ed.) Proc. of the European Conference on Artificial Intelligence, ECAI 1998, pp. 68–72. John Wiley & Sons Ltd., Chichester (1998)Google Scholar
  9. 9.
    Melis, E., Lieber, J., Napoli, A.: Reformulation in Case-Based Reasoning. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 172–183. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Smyth, B.: Case-Based Design. PhD. thesis, Trinity College, University of Dublin (1996)Google Scholar
  11. 11.
    Serafini, L., Tamilin, A.: Local Tableaux for Reasoning in Distributed Description Logics. In: Haarslev, V., Moeller, R. (eds.) Proc. of the International Workshop on Description Logics, DL 2004, pp. 100–109 (2004)Google Scholar
  12. 12.
    Kamp, G., Lange, S., Globig, C.: Related Areas. In: [1], ch. 13Google Scholar
  13. 13.
    Arcos, J.L., Lopez de Mántaras, R.: Perspectives: a declarative bias mechanism for case retrieval. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 279–290. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Nagendra Prassad, M., Lesser, V., Lander, S.: Retrieval and Reasoning in Distributed Case Bases. Journal of Visual Communication and Image Representation 7, 74–87 (1996)CrossRefGoogle Scholar
  15. 15.
    d’Aquin, M., Brachais, S., Bouthier, C., Lieber, J., Napoli, A.: Knowledge Editing and Maintenance Tools for a Semantic Portal in Oncology. International Journal of Human-Computer Studies (IJHCS) 62, 619–638 (2005)CrossRefGoogle Scholar
  16. 16.
    Coyle, L., Doyle, D., Cunningham, P.: Representing Similarity for CBR in XML. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 119–127. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Chen, H., Wu, Z.: CaseML: a RDF-based Case Markup Language for Case-based Reasoning in Semantic Web. In: Fuchs, B., Mille, A. (eds.) From structured cases to unstructured problem solving episodes for experience-based assistance. Workshop at ICCBR 2003 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mathieu d’Aquin
    • 1
  • Jean Lieber
    • 1
  • Amedeo Napoli
    • 1
  1. 1.LORIA (INRIA Lorraine, CNRS, Nancy Universities)Vandœuvre-lès-NancyFrance

Personalised recommendations