Dynamic User Modeling in Health Promotion Dialogs

  • Valeria Carofiglio
  • Fiorella de Rosis
  • Nicole Novielli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3784)


We describe our experience with the design, implementation and revision of a dynamic user model for adapting health promotion dialogs with ECAs to the ‘stage of change’ of the users and to their ‘social’ attitude toward the agent. The user model was built by learning a bayesian network from a corpus of data collected with a Wizard of Oz study. We discuss how uncertainty in the recognition of the user’s mental state may be reduced by integrating a simple linguistic parser with knowledge about the interaction context represented in the model.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, P.A., Guerrero, L.K.: The brightside of relational communication: interpersonal warmth as a social emotion. In: Andersen, P.A., Guerrero, L.K. (eds.) Handbook of Communication and Emotions. Research, theory, applications and contexts. Academic Press, London (1998)Google Scholar
  2. 2.
    Cavalluzzi, A., Carofiglio, V., de Rosis, F.: Affective advice giving dialogs. In: André, E., Dybkjær, L., Minker, W., Heisterkamp, P. (eds.) ADS 2004. LNCS (LNAI), vol. 3068, pp. 77–88. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Cooper, G.F., Herskovitz, E.: A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9 (1992)Google Scholar
  4. 4.
    de Rosis, F., Cavalluzzi, A., Mazzotta, I., Novielli, N.: Can embodied conversational agents induce empathy in users? In: AISB Virtual Social Characters Symposium (2005)Google Scholar
  5. 5.
    Di Eugenio, B., Glass, M.: The Kappa statistics, a second look. Computational Linguistics (2004)Google Scholar
  6. 6.
    Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, Heidelberg (2001)MATHGoogle Scholar
  7. 7.
    Lee, C.M., Narayanan, S.S., Pieraccini, R.: Combining acoustic and language information for emotion recognition. In: Proc. Of ICSLP (2002)Google Scholar
  8. 8.
    Litman, D., Forbes, K., Silliman, S.: Towards emotion prediction in spoken tutoring dialogues. In: Proc. of HLT/NAACL (2003)Google Scholar
  9. 9.
    Miceli, M., de Rosis, F., Poggi, I.: Emotional and non emotional persuasion. Applied Artificial Intelligence: an International Journal (in press)Google Scholar
  10. 10.
    Nass, C., Moon, Y., Fogg, B.J., Dryer, D.C.: Can computer personalities be human personalities? Int. J. Human-Computer Studies 43 (1995)Google Scholar
  11. 11.
    Prochaska, J., Di Clemente, C., Norcross, H.: In search of how people change: applications to addictive behavior. Americal Psychologist 47 (1992)Google Scholar
  12. 12.
    Sillince, J.A., Minors, R.H.: What makes a strong argument? Emotions, highly-placed values and role-playing. Communication and Cognition (1991)Google Scholar
  13. 13.
    Walton, D.: The place of emotion in argument. The Pennsylvania State University Press (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Valeria Carofiglio
    • 1
  • Fiorella de Rosis
    • 1
  • Nicole Novielli
    • 1
  1. 1.Intelligent Interfaces, Department of InformaticsUniversity of BariBariItaly

Personalised recommendations