Facial Expression Recognition Using HLAC Features and WPCA

  • Fang Liu
  • Zhi-liang Wang
  • Li Wang
  • Xiu-yan Meng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3784)


This paper proposes a new facial expression recognition method which combines Higher Order Local Autocorrelation (HLAC) features with Weighted PCA. HLAC features are computed at each pixel in the human face image. Then these features are integrated with a weight map to obtain a feature vector. We select the weight by combining statistic method with psychology theory. The experiments on the “CMU-PITTSBURGH AU-Coded Face Expression Image Database” show that our Weighted PCA method can improve the recognition rate significantly without increasing the computation, when compared with PCA.


Facial Expression Recognition Rate Facial Expression Recognition Principal Component Analysis Method Face Action Code System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mehrabian, A.: Communication without words. Psychology Today 2(4), 53–56 (1968)Google Scholar
  2. 2.
    Guoliang, Y., Zhiliang, W., Jingxia, R.: Facial expression recognition based on adaboost algorithm. Computer Applications 25(4) (April 2005)Google Scholar
  3. 3.
    Lisetti, C.L., Schiano, D.J.: Automatic Facial Expression Interpretation: Where Human-Computer Interaction, Arti cial Intelligence and Cognitive Science Intersect. Pragmatics and Cognition (Special Issue on Facial Information Processing: A Multidisciplinary Perspective) 8(1), 185–235 (2000)Google Scholar
  4. 4.
    Alldrin, N., Smith, A., Turnbull, D.: Classifying Facial Expression with Radial Basis Function Networks, using Gradient Descent and K-means. CSE253 (2003)Google Scholar
  5. 5.
    Cohen, I., Sebe, N., Cozman, F.G.: Learning Bayesian network classifiers for facial expression recognition using both labeled and unlabeled data. In: CVPR 2003, vol. I, p. 595 (2003)Google Scholar
  6. 6.
    Kurita, T., Otsu, N., Sato, T.: A Face Recognition Method Using Higher Order Local Autocorrelation and Multivariate Analysis. In: Proc. IAPR Int. Conf. on Pattern Recognition, pp. 213–216 (1992)Google Scholar
  7. 7.
    Yu, Q., Xiyue, H., Yi, C.: Face recognition based on Weighted PCA. Journal of Chongqing University 27(3) (March 2004)Google Scholar
  8. 8.
    Turk, M., Pentland, A.: Eigen Faces for Recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)CrossRefGoogle Scholar
  9. 9.
    Ekman, P., et al.: Facial Action Coding System. Consulting Psychologists Press, Palo Alto (1978)Google Scholar
  10. 10.
    Michel, P., EI Kaliouby, R.: Real time Facial Expression Recognition in Video using Support Vector Machines. In: ICMI 2003, November 5-7 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Fang Liu
    • 1
  • Zhi-liang Wang
    • 1
  • Li Wang
    • 1
  • Xiu-yan Meng
    • 1
  1. 1.School of Information EngineeringUniversity of Science & Technology BeijingChina

Personalised recommendations