Hardware Approach to the Artificial Hand Control Algorithm Realization

  • Andrzej R. Wolczowski
  • Przemyslaw M. Szecówka
  • Krzysztof Krysztoforski
  • Mateusz Kowalski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3745)


The concept of the bioprosthesis control system implementation in the dedicated hardware is presented. The complete control algorithm was analysed and the decomposition revealing the parts which could be calculated concurrently was made. Specialized digital circuits providing the wavelet transform and the neural network calculations were designed and successfully verified. The experiment results show that the proposed solution provides the desired dexterity and agility of the artificial hand.


Discrete Wavelet Transformation Clock Cycle Field Programmable Gate Array Learn Vector Quantization Arithmetic Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Luca, C.J.: The use of Surface Electromyography in Biomechanics. Journal of Applied Biomechanics 13(2) (May 1997)Google Scholar
  2. 2.
    Hudgins, B., Parker, P., Scott, R.N.: A New Strategy for Multifunction Myoelectric Control. IEEE BME 40(1), 82–94 (1993)CrossRefGoogle Scholar
  3. 3.
    Kohonen, T.K.: Self-Organizing Maps. Springer, Berlin (1995)Google Scholar
  4. 4.
    Krysztoforski, K., Wolczowski, A., Bedzinski, R., Helt, K.: Recognition of Palm Finger Movements on the Basis of EMG Signals with Application of Wavelets. TASK Quarterly 8(2), 269–280 (2004)Google Scholar
  5. 5.
    Krysztoforski, K., Wolczowski, A.: Laboratory Test-Bed for EMG Signal Measurement (in Polish), Postepy Robotyki, WKiL, Warszawa (2004) Google Scholar
  6. 6.
    Kurzynski, M.: Pattern Recognition. Statistical Methods, (in Polish), Oficyna Wydawnicza PWr, Wroclaw (1997) Google Scholar
  7. 7.
    Light, C.M., Chappell, P.H., Hudgins, B., Englehart, K.: Intelligent multifunction myoelectric control of hand prostheses. Journal of Medical Engineering & Technology 26(4), 139–146 (2002)CrossRefGoogle Scholar
  8. 8.
    Mallat, S.: A wavelet tour of signal processing. Academic Press, San Diego (1998)zbMATHGoogle Scholar
  9. 9.
    Nishikawa, D.: Studies on Electromyogram to Motion Classifier, Ph.D. dissertation, Graduate school of engineering, Hokkaido University, Sapporo (2001) Google Scholar
  10. 10.
    Stratix II Device Handbook. Altera Corporation, San Jose (2005) Google Scholar
  11. 11.
    Szecówka, P.M., Charytoniuk, A., Najbert, R.: Automated implementation of feedforward neural network in digital integrated circuit. In: Proc. 10th MIXDES, Lodz, pp. 164–167 (2003)Google Scholar
  12. 12.
    Wolczowski, A.: Smart Hand: The Concept of Sensor based Control. In: Proc. of 7th IEEE Int. Symposium on Methods and Models in Automation and Robotics, Miedzyzdroje (2001)Google Scholar
  13. 13.
    Wolczowski, A., Krysztoforski, K., Bedzinski, R.: Control issues of Myoelectric Hand. In: XII National Biocybernetic and Biomedical Eng. Conference, Warszawa, pp. 419–423 (2001)Google Scholar
  14. 14. Patient information about Sensor Hand

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andrzej R. Wolczowski
    • 1
  • Przemyslaw M. Szecówka
    • 2
  • Krzysztof Krysztoforski
    • 3
  • Mateusz Kowalski
    • 2
  1. 1.Institute of Engineering Cybernetics 
  2. 2.Faculty of Microsystem Electronics and Photonics 
  3. 3.Institute of Machine Design and OperationsWroclaw University of TechnologyWroclawPoland

Personalised recommendations