Successive Linear Programs for Computing All Integral Points in a Minkowski Sum

  • Ioannis Z. Emiris
  • Kyriakos Zervoudakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3746)

Abstract

The computation of all integral points in Minkowski (or vector) sums of convex lattice polytopes of arbitrary dimension appears as a subproblem in algebraic variable elimination, parallel compiler code optimization, polyhedral combinatorics and multivariate polynomial multiplication. We use an existing approach that avoids the costly construction of the Minkowski sum by an incremental process of solving Linear Programming (LP) problems. Our main contribution is to exploit the similarities between LP problems in the tree of LP instances, using duality theory and the two-phase simplex algorithm. Our public domain implementation improves substantially upon the performance of the above mentioned approach and is faster than porta on certain input families; besides, the latter requires a description of the Minkowski sum which has high complexity. Memory consumption limits commercial or free software packages implementing multivariate polynomial multiplication, whereas ours can solve all examined data, namely of dimension up to 9, using less than 2.7 MB (before actually outputting the points) for instances yielding more than 3 million points.

Keywords

convex polytope Minkowski sum integral points linear programming duality theory polyhedral combinatorics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amarasinghe, S.P.: Parallelizing Compiler Techniques Based on Linear Inequalities. Ph.D. thesis, Computer Systems Lab., Stanford University (1997)Google Scholar
  2. 2.
    Christof, T., Loebel, A., Stoer, M.: PORTA 1.3.2. Univ. of Heidelberg and ZIB Berlin PORTA (1999), http://www.iwr.uni-heidelberg.de/groups/comopt/software/
  3. 3.
    Christof, T., Reinelt, G.: Combinatorial Optimization and Small Polytopes. Top (Spanish Statistical and Operations Research Society) 4, 1–64 (1996)MATHMathSciNetGoogle Scholar
  4. 4.
    Chvátal, V.: Linear Programming. W.H. Freeman & Co, New York (1983)MATHGoogle Scholar
  5. 5.
    Clauss, P.: Counting Solutions to Linear and Nonlinear Constraints Through Ehrart Polynomials: Applications to Analyze and Transform Scientific Programs. In: Intern. Conf. Supercomp, pp. 278–285 (1996)Google Scholar
  6. 6.
    The Computational Algebra Group. Magma 2.8. University of Sydney, Australia, http://magma.maths.usyd.edu.au/magma/
  7. 7.
    Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185. Springer, New York (1998)MATHGoogle Scholar
  8. 8.
    Dickenstein, A., Emiris, I.Z.: Multihomogeneous Resultant Formulae by Means of Complexes. J. Symb. Computation 36(3-4), 317–342 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Emiris, I.Z., Zervoudakis, K.: Successive Linear Programs for Computing all Integral Points in a Minkowski Sum, http://www.di.uoa.gr/~quasi/EmiZer.pdf
  10. 10.
    Emiris, I.Z.: Enumerating a subset of the integer points inside a Minkowski sum. Comp. Geom.: Theory & Appl., Spec. Issue 22(1–3), 143–166 (2002)MATHMathSciNetGoogle Scholar
  11. 11.
    Emiris, I.Z., Canny, J.F.: Efficient incremental algorithms for the sparse resultant and the mixed volume. J. Symbolic Computation 20(2), 117–149 (1995)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston (1994)Google Scholar
  13. 13.
    GNU Project, SciFace Software GmbH. GLPK 3.2.3, GNU LInear Programming Kit, http://www.gnu.org/software/glpk
  14. 14.
    Gritzmann, P., Klee, V.: Computational convexity. In: Goodman, J.E., O’Rourke, J. (eds.) The Handbook of Discrete and Computational Geometry, pp. 491–516. CRC Press, Boca Raton (1997)Google Scholar
  15. 15.
    Gritzmann, P., Sturmfels, B.: Minkowski addition of polytopes: Computational complexity and applications to Groebner bases. SIAM J. Disc. Math. 6(2), 246–269 (1993)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Konrad-Zuse-Zentrum für Informationstechnik, Berlin. SoPlex 1.2.1, Sequential Object-oriented simPLEX class library, http://www.zib.de/Optimization/Software/Soplex
  17. 17.
    Lewis, R.: Fermat, A Computer Algebra System for Polynomial and Matrix Computation. Fordham University, New York, http://www.bway.net/~lewis
  18. 18.
    Mourrain, B.: Symbolic Numeric Applications, INRIA Sophia-Antipolis (2002), http://www-sop.inria.fr/galaad/synaps/
  19. 19.
    ILOG S.A. Planner 3.3, Reference Manual (2001)Google Scholar
  20. 20.
    PolyLib, A library of polyhedral functions (2002), http://icps.u-strasbg.fr/polylibs
  21. 21.
    Schrijver, A.: Theory of Linear and Integer Programming. J. Wiley & Sons, Chichester (1982)Google Scholar
  22. 22.
    Sturmfels, B., Zelevinsky, A.: Multigraded Resultants of Sylvester Type. J. of Algebra 163(1), 115–127 (1994)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Whaley, R.C., Patitet, A., Dongarra, J.J.: Automated empirical optimization of software and the ATLAS project, http://netlib.uow.edu.au/atlas/

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ioannis Z. Emiris
    • 1
  • Kyriakos Zervoudakis
    • 1
  1. 1.Dept. of Informatics and TelecommunicationsNational University of AthensGreece

Personalised recommendations