Advertisement

A Primal-Dual Algorithm for Online Non-uniform Facility Location

  • Dimitris Fotakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3746)

Abstract

In the online version of Facility Location, the demand points arrive one at a time and must be irrevocably assigned to an open facility upon arrival. The objective is to minimize the sum of facility and assignment costs. We present a simple primal-dual deterministic algorithm for the general case of non-uniform facility costs. We prove that its competitive ratio is no greater than 4log(n+1) + 2, which is close to the lower bound of \(\Omega(\frac{log n}{log log n})\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anagnostopoulos, A., Bent, R., Upfal, E., Van Hentenryck, P.: A Simple and Deterministic Competitive Algorithm for Online Facility Location. Information and Computation 194, 175–202 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local Search Heuristics for k-Median and Facility Location Problems. In: Proc. of STOC 2001, pp. 21–29 (2001)Google Scholar
  3. 3.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  4. 4.
    Charikar, M., Guha, S.: Improved Combinatorial Algorithms for the Facility Location and k-Median Problems. In: Proc. of FOCS 1999, pp. 378–388 (1999)Google Scholar
  5. 5.
    Fotakis, D.: On the Competitive Ratio for Online Facility Location. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 637–652. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Guha, S.: Approximation Algorithms for Facility Location Problems. PhD thesis, Stanford University (2000)Google Scholar
  7. 7.
    Guha, S., Khuller, S.: Greedy Strikes Back: Improved Facility Location Algorithms. In: Proc. of SODA 1998, pp. 649–657 (1998)Google Scholar
  8. 8.
    Jain, K., Mahdian, M., Saberi, A.: A New Greedy Approach for Facility Location Problems. In: Proc. of STOC 2002, pp. 731–740 (2002)Google Scholar
  9. 9.
    Jain, K., Vazirani, V.: Approximation Algorithms for Metric Facility Location and k-Median Problems Using the Primal-Dual Schema and Lagrangian Relaxation. J. of the ACM 48(2), 274–296 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mahdian, M., Ye, Y., Zhang, J.: Improved Approximation Algorithms for Metric Facility Location Problems. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 229–242. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Meyerson, A.: Online Facility Location. In: Proc. of FOCS 2001, pp. 426–431 (2001)Google Scholar
  12. 12.
    Shmoys, D.: Approximation Algorithms for Facility Location Problems. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 27–32. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Shmoys, D., Tardos, E., Aardal, K.: Approximation Algorithms for Facility Location Problems. In: Proc. of STOC 1997, pp. 265–274 (1997)Google Scholar
  14. 14.
    Sviridenko, M.: An Improved Approximation Algorithm for the Metric Uncapacitated Facility Location Problem. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 240–257. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Vazirani, V.: Approximation Algorithms. Springer, Heidelberg (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Dimitris Fotakis
    • 1
  1. 1.Department of Information and Communication Systems EngineeringUniversity of the AegeanKarlovasi, SamosGreece

Personalised recommendations