Advertisement

Fusion of Local and Regional Approaches for On-Line Signature Verification

  • Julian Fierrez-Aguilar
  • Stephen Krawczyk
  • Javier Ortega-Garcia
  • Anil K. Jain
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3781)

Abstract

Function-based methods for on-line signature verification are studied. These methods are classified into local and regional depending on the features used for matching. One representative method of each class is selected from the literature. The selected local and regional methods are based on Dynamic Time Warping and Hidden Markov Models, respectively. Some improvements are presented for the local method aimed at strengthening the performance against skilled forgeries. The two methods are compared following the protocol defined in the Signature Verification Competition 2004. Fusion results are also provided demonstrating the complementary nature of these two approaches.

Keywords

Hide Markov Model Regional Approach Dynamic Time Warping Training Signature False Acceptance Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. on Circuits and Systems for Video Technology 14, 4–20 (2004)CrossRefGoogle Scholar
  2. 2.
    Plamondon, R., Srihari, S.N.: On-line and off-line handwriting recognition: A comprehensive survey. IEEE Trans. on PAMI 22, 63–84 (2000)Google Scholar
  3. 3.
    Plamondon, R., Lorette, G.: Automatic signature verification and writer identification - The state of the art. Pattern Recognition 22, 107–131 (1989)CrossRefGoogle Scholar
  4. 4.
    Lee, L.L., Berger, T., Aviczer, E.: Reliable on-line human signature verification systems. IEEE Trans. on Pattern Anal. and Machine Intell. 18, 643–647 (1996)CrossRefGoogle Scholar
  5. 5.
    Kashi, R.S., Hu, J., Nelson, W.L., Turin, W.: On-line handwritten signature verification using Hidden Markov Model features. In: Proc. of ICDAR, pp. 253–257 (1997)Google Scholar
  6. 6.
    Zhang, K., Nyssen, E., Sahli, H.: A multi-stage on-line signature verification system. Pattern Analysis and Applications 5, 288–295 (2002)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Fierrez-Aguilar, J., Nanni, L., Lopez-Penalba, J., Ortega-Garcia, J., Maltoni, D.: An on-line signature verification system based on fusion of local and global information. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 523–532. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Yang, L., Widjaja, B.K., Prasad, R.: Application of Hidden M arkov Models forsignature verification. Pattern Recognition 28, 161–170 (1995)CrossRefGoogle Scholar
  9. 9.
    Nalwa, V.S.: Automatic on-line signature verification. Proceedings of the IEEE 85, 215–239 (1997)CrossRefGoogle Scholar
  10. 10.
    Jain, A.K., Griess, F., Connell, S.: On-line signature verification. Pattern Recognition 35, 2963–2972 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Kholmatov, A., Yanikoglu, B.: Biometric authentication using online signatures. In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds.) ISCIS 2004. LNCS, vol. 3280, pp. 373–380. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Fierrez-Aguilar, J., Ortega-Garcia, J., Gonzalez-Rodriguez, J.: Target dependent score normalization techniques and their application to signature verification. IEEE Trans. on Systems, Man and Cybernetics, part C 35, 418–425 (2005)CrossRefGoogle Scholar
  13. 13.
    Jain, A.K., Ross, A.: Multibiometric systems. Communications of the ACM 47, 34–40 (2004)CrossRefGoogle Scholar
  14. 14.
    Bigun, E.S., Bigun, J., Duc, B., Fischer, S.: Expert conciliation for multi modal person authentication systems by Bayesian statistics. In: Bigün, J., Borgefors, G., Chollet, G. (eds.) AVBPA 1997. LNCS, vol. 1206, pp. 291–300. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  15. 15.
    Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Trans. on Pattern Anal. and Machine Intell. 20, 226–239 (1998)CrossRefGoogle Scholar
  16. 16.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  17. 17.
    Fierrez-Aguilar, J., Garcia-Romero, D., Ortega-Garcia, J., Gonzalez-Rodriguez, J.: Speaker verification using adapted user-dependent multilevel fusion. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds.) MCS 2005. LNCS, vol. 3541, pp. 356–365. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Yeung, D.Y., Chang, H., Xiong, Y., George, S., Kashi, R., Matsumoto, T., Rigoll, G.: SVC2004: First International Signature Verification Competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 16–22. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Krawczyk, S.: User authentication using on-line signature and speech. Master’s thesis, Michigan State University, Dep. of Computer Science and Engineering (2005)Google Scholar
  20. 20.
    Jain, A., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems. Pattern Recognition (2005) (to appear) Google Scholar
  21. 21.
    Ortega-Garcia, J., et al.: MCYT baseline corpus: A bimodal biometric database. IEEE Proc. Vision, Image and Signal Processing 150, 395–401 (2003)CrossRefGoogle Scholar
  22. 22.
    Martin, A., et al.: The DET curve in assessment of decision task performance. In: Proc. of EuroSpeech, pp. 1895–1898 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Julian Fierrez-Aguilar
    • 1
  • Stephen Krawczyk
    • 2
    • 3
  • Javier Ortega-Garcia
    • 1
  • Anil K. Jain
    • 2
  1. 1.ATVS, Escuela Politecnica SuperiorUniversidad Autonoma de MadridMadridSpain
  2. 2.Department of Computer Science and EngineeringMichigan State UniversityEast LansingUSA
  3. 3.Information Technology DivisionNaval Research LaboratoryWashington, DCUSA

Personalised recommendations