Computing Communities in Large Networks Using Random Walks

  • Pascal Pons
  • Matthieu Latapy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3733)

Abstract

Dense subgraphs of sparse graphs (communities), which appear in most real-world complex networks, play an important role in many contexts. Computing them however is generally expensive. We propose here a measure of similarities between vertices based on random walks which has several important advantages: it captures well the community structure in a network, it can be computed efficiently, it works at various scales, and it can be used in an agglomerative algorithm to compute efficiently the community structure of a network. We propose such an algorithm which runs in time O(mn 2) and space O(n 2) in the worst case, and in time O(n 2log n) and space O(n 2) in most real-world cases (n and m are respectively the number of vertices and edges in the input graph).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wasserman, S., Faust, K.: Social network analysis. Cambridge University Press, Cambridge (1994)Google Scholar
  2. 2.
    Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)CrossRefGoogle Scholar
  3. 3.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47 (2002)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Newman, M.E.J.: The structure and function of complex networks. SIAM REVIEW 45, 167 (2003)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dorogovtsev, S., Mendes, J.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)MATHGoogle Scholar
  6. 6.
    Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical Review E 70 (2004) 066111Google Scholar
  7. 7.
    Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11, 430–452 (1990)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal 49, 291–308 (1970)Google Scholar
  9. 9.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. PNAS 99, 7821–7826 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69 (2004) 026113Google Scholar
  11. 11.
    Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. PNAS 101, 2658–2663 (2004)CrossRefGoogle Scholar
  12. 12.
    Fortunato, S., Latora, V., Marchiori, M.: Method to find community structures based on information centrality. Physical Review E 70, 56104 (2004)CrossRefGoogle Scholar
  13. 13.
    Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Physical Review E 69, 66133 (2004)CrossRefGoogle Scholar
  14. 14.
    Donetti, L., Muñoz, M.A.: Detecting network communities: a new systematic and efficient algorithm. Journal of Statistical Mechanics 2004, 10012 (2004)CrossRefGoogle Scholar
  15. 15.
    Wu, F., Huberman, B.A.: Finding communities in linear time: A physics approach. The European Physical Journal B 38, 331–338 (2004)CrossRefGoogle Scholar
  16. 16.
    Reichardt, J., Bornholdt, S.: Detecting fuzzy community structures in complex networks with a potts model. Physical Review Letters 93 (2004) 218701Google Scholar
  17. 17.
    Bagrow, J., Bollt, E.: A local method for detecting communities. Physical Review E (2005) (to appear)Google Scholar
  18. 18.
    Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. arXiv:cond-mat/0501368 (2005)Google Scholar
  19. 19.
    Gaume, B.: Balades aléatoires dans les petits mondes lexicaux. I3 Information Interaction Intelligence 4 (2004)Google Scholar
  20. 20.
    Fouss, F., Pirotte, A., Saerens, M.: A novel way of computing dissimilarities between nodes of a graph, with application to collaborative filtering. In: Workshop on Statistical Approaches for Web Mining (SAWM), Pisa, pp. 26–37 (2004)Google Scholar
  21. 21.
    Zhou, H., Lipowsky, R.: Network brownian motion: A new method to measure vertex-vertex proximity and to identify communities and subcommunities. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 1062–1069. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    van Dongen, S.: Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht (2000)Google Scholar
  23. 23.
    Lovász, L.: Random walks on graphs: a survey. In: Combinatorics, Paul Erdős is eighty, Budapest. Bolyai Soc. Math. Stud. János Bolyai Math. Soc., vol. 2, pp. 353–397 (1996); (Keszthely, 1993)Google Scholar
  24. 24.
    Simonsen, I., Eriksen, K.A., Maslov, S., Sneppen, K.: Diffusion on complex networks: a way to probe their large-scale topological structures. Physica A: Statistical Mechanics and its Applications 336, 163–173 (2004)CrossRefGoogle Scholar
  25. 25.
    Schulman, L.S., Gaveau, B.: Coarse grains: The emergence of space and order. Foundations of Physics 31, 713–731 (2001)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Gaveau, B., Lesne, A., Schulman, L.S.: Spectral signatures of hierarchical relaxation. Physics Letters A 258, 222–228 (1999)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236–244 (1963)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Jambu, M., Lebeaux, M.: Cluster analysis and data analysis. North Holland Publishing, Amsterdam (1983)MATHGoogle Scholar
  29. 29.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Pascal Pons
    • 1
  • Matthieu Latapy
    • 1
  1. 1.LIAFAUniversité Paris Denis Diderot and CNRSParisFrance

Personalised recommendations