Elastic Interaction Models for Active Contours and Surfaces

  • Albert C. S. Chung
  • Yang Xiang
  • Jian Ye
  • W. K. Law
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3765)


In this paper, we propose a new framework for active contour and surface models. Based on the concepts of the elastic interaction between line defects in solids, this framework defines an image-based speed field for contour evolution. Different from other level set based frameworks, the speed field is global and defined everywhere in the whole space. It can offer a long-range attractive interaction between object boundary and evolving contour. The new framework is general because it can be easily extended to higher dimension. Using the Fast Fourier Transforms, we also introduce an efficient algorithm for finding the values of the image-based speed field. Some experiments on synthetic and clinical images are shown to indicate the properties of our model.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cohen, L.D.: On active contour models and balloons. Computer Vision and Graphic Image Processiong Conference 53(2), 211–331 (1991)MATHGoogle Scholar
  2. 2.
    Hirth, J.P., Lothe, J.: Theory of Dislocations, 2nd edn. John Wiley & Sons, Inc., New York (1982)Google Scholar
  3. 3.
    Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM Journal on Scientific Computing 21(6), 2126–2143 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  5. 5.
    Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(2), 158–175 (1995)CrossRefGoogle Scholar
  6. 6.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Osher, S., Shu, C.W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM Journal of Numerical Analysis 28(4), 907–922 (1991)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Paragios, N., Mellina-Gottardo, O., Ramesh, V.: Gradient vector flow fast geometric active contours. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(3), 402–407 (2004)CrossRefGoogle Scholar
  9. 9.
    Peng, D., Merriman, B., Osher, S., Zhao, H.K., Kang, M.: A PDE-based fast local level set method. Journal of Computational Physics 155(2), 410–438 (1999)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Xiang, Y., Chung, A.C.S., Ye, J.: A New Active Contour Method based on Elastic Interaction. IEEE International Conference on Computer Vision and Pattern Recognition 1, 452–457 (2005)Google Scholar
  11. 11.
    Xu, C., Prince, J.L.: Generalized gradient vector flow external forces for active contours. Signal Processing 71(2), 131–139 (1998)MATHCrossRefGoogle Scholar
  12. 12.
    Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Transaction on Image Processing 7(3), 359–369 (1998)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Albert C. S. Chung
    • 1
  • Yang Xiang
    • 2
  • Jian Ye
    • 2
  • W. K. Law
    • 1
  1. 1.Lo Kwee-Seong Medical Image Analysis Laboratory, Department of Computer ScienceThe Hong Kong University of Science and TechnologyHong Kong
  2. 2.Department of MathematicsThe Hong Kong University of Science and TechnologyHong Kong

Personalised recommendations