Advertisement

Spatio-temporal Similarity Analysis Between Trajectories on Road Networks

  • Jung-Rae Hwang
  • Hye-Young Kang
  • Ki-Joune Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3770)

Abstract

In order to analyze the behavior of moving objects, a measure for determining the similarity of trajectories needs to be defined. Although research has been conducted that retrieved similar trajectories of moving objects in Euclidean space, very little research has been conducted on moving objects in the space defined by road networks. In terms of real applications, most moving objects are located in road network space rather than in Euclidean space. In this paper, we investigate the properties of similar trajectories in road network space. And we propose a method to retrieve similar trajectories based on this observation and similarity measure between trajectories on road network space. Experimental results show that this method provides not only a practical method for searching for similar trajectories but also a clustering method for trajectories.

Keywords

Trajectories Road Network Space Similarity between Trajectories 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel Approaches in Query Processing for Moving Object Trajectories. In: Proceedings of the 26th International Conference on Very Large Data Bases, pp. 395–406 (2000)Google Scholar
  2. 2.
    Vlachos, M., Kollios, G., Gunopulos, D.: Discovering Similar Multidimensional Trajectories. In: Proceedings of the Eighteenth International Conference on Data Engineering, pp. 673–684. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  3. 3.
    Yanagisawa, Y., ichi Akahani, J., Satoh, T.: Shape-Based Similarity Query for Trajectory of Mobile Objects. In: Chen, M.-S., Chrysanthis, P.K., Sloman, M., Zaslavsky, A. (eds.) MDM 2003. LNCS, vol. 2574, pp. 63–77. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Speicys, L., Jensen, C.S., Kligys, A.: Computational Data Modeling for Network-constrained Moving Objects. In: Proceedings of the Eleventh ACM International Symposium on Advances in Geographic Information Systems, pp. 118–125 (2003)Google Scholar
  5. 5.
    Vazirgiannis, M., Wolfson, O.: A Spatiotemporal Model and Language for Moving Objects on Road Networks. In: Proceedings of the Seventh International Symposium on Spatial and Temporal Databases, pp. 20–35. Springer, Heidelberg (2001)Google Scholar
  6. 6.
    Hariharan, R., Toyama, K.: Project Lachesis: Parsing and Modeling Location Histories. In: Egenhofer, M.J., Freksa, C., Miller, H.J. (eds.) GIScience 2004. LNCS, vol. 3234, pp. 106–124. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Hornsby, K., Egenhofer, M.: Modeling Moving Objects over Multiple Granularities. Annals of Mathematics and Artificial Intelligence 36, 177–194 (2002)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Jensen, C.S., Kolárvr, J., Pedersen, T.B., Timko, I.: Nearest Neighbor Queries in Road Networks. In: Proceedings of the Eleventh ACM International Symposium on Advances in Geographic Information Systems, pp. 1–8 (2003)Google Scholar
  9. 9.
    Van de Weghe, N., Cohn, A.G., Bogaert, P., De Maeyer, P.: Representation of Moving Objects along a Road Network. In: Proceedings of the twelfth International Conference on GeoinformaticsGoogle Scholar
  10. 10.
    Vlachos, M., Gunopulos, D., Kollios, G.: Robust Similarity Measures for Mobile Object Trajectories. In: Proceedings of the Thirteenth International Workshop on Database and Expert Systems Applications, pp. 721–728. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  11. 11.
    Shim, C.-B., Chang, J.-W.: Similar Sub-Trajectory Retrieval for Moving Objects in Spatio-temporal Databases. In: Proceedings of the Seventh East-European Conference on Advances in Databases and Informations Systems, pp. 308–322. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An Efficient Data Clustering Method for Very Large Databases. In: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, pp. 103–114. ACM Press, New York (1996)CrossRefGoogle Scholar
  13. 13.
    Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by Pattern Similarity in Large Data Sets. In: Proceedings of the 2002 ACM SIGMOD international conference on Management of data, pp. 394–405. ACM Press, New York (2002)CrossRefGoogle Scholar
  14. 14.
    Liao, S., Lopez, M.A., Leutenegger, S.T.: High Dimensional Similartity Search With Space Filling Curves. In: Proceedings of the seventeenth International Conference on Data Engineering, pp. 615–622. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jung-Rae Hwang
    • 1
  • Hye-Young Kang
    • 2
  • Ki-Joune Li
    • 2
  1. 1.Department of Geographic Information SystemsPusan National UniversityKorea
  2. 2.Department of Computer SciencePusan National UniversityKorea

Personalised recommendations