Advertisement

A Study of Non-smooth Convex Flow Decomposition

  • Jing Yuan
  • Christoph Schnörr
  • Gabriele Steidl
  • Florian Becker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3752)

Abstract

We present a mathematical and computational feasibility study of the variational convex decomposition of 2D vector fields into coherent structures and additively superposed flow textures. Such decompositions are of interest for the analysis of image sequences in experimental fluid dynamics and for highly non-rigid image flows in computer vision.

Our work extends current research on image decomposition into structural and textural parts in a twofold way. Firstly, based on Gauss’ integral theorem, we decompose flows into three components related to the flow’s divergence, curl, and the boundary flow. To this end, we use proper operator discretizations that yield exact analogs of the basic continuous relations of vector analysis. Secondly, we decompose simultaneously both the divergence and the curl component into respective structural and textural parts. We show that the variational problem to achieve this decomposition together with necessary compatibility constraints can be reliably solved using a single convex second-order conic program.

Keywords

Particle Image Velocimetry Motion Estimation Compatibility Constraint Image Decomposition Helmholtz Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raffel, M., Willert, C., Kompenhans, J.: Particle Image Velocimetry, 2nd edn. Springer, Heidelberg (2001)Google Scholar
  2. 2.
    Suter, D.: Motion estimation and vector splines. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA, USA, June 1994, pp. 939–942. IEEE Computer Society Press, Los Alamitos (1994)CrossRefGoogle Scholar
  3. 3.
    Corpetti, T., Mémin, E., Pérez, P.: Dense estimation of fluid flows. IEEE Trans. Patt. Anal. Mach. Intell. 24(3), 365–380 (2002)CrossRefGoogle Scholar
  4. 4.
    Kohlberger, T., Mémin, E., Schnörr, C.: Variational dense motion estimation using the helmholtz decomposition. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 432–448. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Lewalle, J., Delville, J., Bonnet, J.-P.: Decomposition of mixing layer turbulence into coherent structures and background fluctuations. Applied Scientific Research 64(4), 301–328 (2000)zbMATHGoogle Scholar
  6. 6.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)zbMATHCrossRefGoogle Scholar
  7. 7.
    Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations. In: The fifteenth Dean Jacqueline B. Lewis memorial lectures. University Lecture Series, vol. 22. American Mathematical Society, Providence (2001)Google Scholar
  8. 8.
    Vese, L.A., Osher, S.J.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Scient. Computing 19(1-3), 553–572 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Vese, L.A., Osher, S.J.: Image denoising and decomposition with total variation minimization and oscillatory functions. J. of Math. Imag. Vision 20(1/2), 7–18 (2004)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Aujol, J.F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. of Math. Imag. Vision 22(1), 71–88 (2005)CrossRefGoogle Scholar
  11. 11.
    Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. Int. J. of Comp. Vision 63(1), 85–104 (2005)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Yuan, J., Ruhnau, P., Mémin, E., Schnörr, C.: Discrete orthogonal decomposition and variational fluid flow estimation. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 267–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Yin, W., Goldfarb, D., Osher, S.: Total variation based image cartoon-texture decomposition. Technical Report CORC TR-2005-01, Columbia University (2005) (submitted to Inverse Problems)Google Scholar
  14. 14.
    Hyman, J.M., Shashkov, M.J.: The orthogonal decomposition theorems for mimetic finite difference methods. SIAM J. Numer. Anal. 36(3), 788–818 (1999)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Aujol, J.-F., Chambolle, A.: Dual norms and image decomposition models. International Journal of Computer Vision 63(1), 85–104 (2005)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra and its Applications 284, 193–228 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers. Math. Programming, Series B 95(2), 407–430 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Sturm, J.F.: Using SeDuMi 1.02, a MATLAB for optimization over symmetric cones. Technical Report, Communications Research Laboratory, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada (August 1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jing Yuan
    • 1
  • Christoph Schnörr
    • 1
  • Gabriele Steidl
    • 1
  • Florian Becker
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of MannheimMannheimGermany

Personalised recommendations