Brain Surface Parameterization Using Riemann Surface Structure

  • Yalin Wang
  • Xianfeng Gu
  • Kiralee M. Hayashi
  • Tony F. Chan
  • Paul M. Thompson
  • Shing-Tung Yau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3750)

Abstract

We develop a general approach that uses holomorphic 1-forms to parameterize anatomical surfaces with complex (possibly branching) topology. Rather than evolve the surface geometry to a plane or sphere, we instead use the fact that all orientable surfaces are Riemann surfaces and admit conformal structures, which induce special curvilinear coordinate systems on the surfaces. Based on Riemann surface structure, we can then canonically partition the surface into patches. Each of these patches can be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable. To illustrate the technique, we computed conformal structures for several types of anatomical surfaces in MRI scans of the brain, including the cortex, hippocampus, and lateral ventricles. We found that the resulting parameterizations were consistent across subjects, even for branching structures such as the ventricles, which are otherwise difficult to parameterize. Compared with other variational approaches based on surface inflation, our technique works on surfaces with arbitrary complexity while guaranteeing minimal distortion in the parameterization. It also offers a way to explicitly match landmark curves in anatomical surfaces such as the cortex, providing a surface-based framework to compare anatomy statistically and to generate grids on surfaces for PDE-based signal processing.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thompson, P., et al.: Nature 404, 190–193 (2000)Google Scholar
  2. 2.
    Thompson, P., et al.: Human Brain Mapping, vol. 9, pp. 81–92 (2000)Google Scholar
  3. 3.
    Schwartz, E., et al.: IEEE PAMI 11, 1005–1008 (1989)Google Scholar
  4. 4.
    Timsari, B., Leahy, R.: In: Hanson, K. (ed.) Proc. SPIE, Medical Imaging, vol. 3979, pp. 698–708 (2000)Google Scholar
  5. 5.
    Hurdal, M.K., Stephenson, K.: NeuroImage, vol. 23, pp. S119–S128 (2004)Google Scholar
  6. 6.
    Angenent, S., et al.: MICCAI, pp. 271–278 (1999)Google Scholar
  7. 7.
    Gu, X., et al.: IEEE TMI 23, 949–958 (2004)Google Scholar
  8. 8.
    Schoen, R., Yau, S.T.: Lectures on Harmonic Maps. International Press (1997)Google Scholar
  9. 9.
    Gu, X., Yau, S.T.: Communication of Information and Systems  2, pp. 121–146 (2002)Google Scholar
  10. 10.
    Lamecker, H., et al.: MICCAI, pp. 422–427. Springer, Heidelberg (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Yalin Wang
    • 1
  • Xianfeng Gu
    • 2
  • Kiralee M. Hayashi
    • 3
  • Tony F. Chan
    • 1
  • Paul M. Thompson
    • 3
  • Shing-Tung Yau
    • 4
  1. 1.Mathematics DepartmentUCLALos AngelesUSA
  2. 2.Comp. Sci. DepartmentSUNY at Stony BrookStony BrookUSA
  3. 3.Lab. of Neuro ImagingUCLA School of MedicineLos AngelesUSA
  4. 4.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations