Effects of Latency on Telesurgery: An Experimental Study

  • Reiza Rayman
  • Serguei Primak
  • Rajni Patel
  • Merhdad Moallem
  • Roya Morady
  • Mahdi Tavakoli
  • Vanja Subotic
  • Natalie Galbraith
  • Aimee van Wynsberghe
  • Kris Croome
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3750)

Abstract

The paper is concerned with determining the feasibility of performing telesurgery over long communication links. It describes an experimental testbed for telesurgery that is currently available in our laboratory. The tesbed is capable of supporting both wired and satellite connections as well as simulated network environments. The feasibility of performing telesurgery over a satellite link with approximately 600 ms delay is shown through a number of dry and wet lab experiments. Quantative results of these experiments are also discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Butner, S.E., Ghodoussi, M.: Transforming a surgical robot for human telesurgery. IEEE Trans. Robotics & Automation 19(5), 818–824 (2003)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Rosser, J.C., Gabriel, N., Herman, B., Murayama, M.: Telementoring and teleproctoring. World J. Surg. 25, 1438–1448 (2001)CrossRefGoogle Scholar
  4. 4.
    Link, R.E., Schulam, P.G., Kavoussi, L.R.: Telesurgery, Remote monitoring and assistance during laparoscopy. Urol. Clin. North Am. 28, 177–188 (2001)CrossRefGoogle Scholar
  5. 5.
    Lee, B.R., Png, D.J., Liew, L., et al.: Laparoscopic telesurgery between the United States and Singapore. Ann. Acad. Med. Singapore 29, 665–668 (2000)Google Scholar
  6. 6.
    Cheah, W.K., Lee, B., Lenzi, J.E., Goh, P.M.: Telesurgical laparoscopic cholecystectomy between two countries. Surg. Endosc. 14, 1085 (2000)Google Scholar
  7. 7.
    McRuer, D., Graham, D., Krendel, E., Reisener, W.: Human Pilot Dynamics in Compensatory Systems - Theory, Models, and Experiments with Controlled Elements and Forcing Function variations. AFFDL-TR-65-15 (July 1965)Google Scholar
  8. 8.
    McRuer, D., Graham, D.: Manual Control of Single Loop Systems: Part I. J. Franklin Institute 283, 1–29 (1967)CrossRefGoogle Scholar
  9. 9.
    Fitts, P.: The information capacity of the human motor system in controlling the amplitude of movement. J. of Experimental Psychology 47, 381–391 (1954)CrossRefGoogle Scholar
  10. 10.
    Tass, P., Kurths, J., Rosenblum, M.G., Guasti, G., Hefter, H.: Non-linear tracking Systems with Delay. Physical Review E 54, R2224–R2227 (1996)CrossRefGoogle Scholar
  11. 11.
    McFoulkes, A., Miall, C.: Adaptation to Visual Feedback Delays in a Human manual Tracking Task. Experimental Brain Research 131, 101–110 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Reiza Rayman
    • 1
  • Serguei Primak
    • 2
  • Rajni Patel
    • 2
  • Merhdad Moallem
    • 2
  • Roya Morady
    • 1
  • Mahdi Tavakoli
    • 2
  • Vanja Subotic
    • 2
  • Natalie Galbraith
    • 2
  • Aimee van Wynsberghe
    • 1
  • Kris Croome
    • 1
  1. 1.Canadian Surgical Technologies & Advanced Robotics (CSTAR)LondonCanada
  2. 2.CSTAR & Department of Electrical and Computer EngineeringThe University of Western OntarioLondonCanada

Personalised recommendations