Unbiased Atlas Formation Via Large Deformations Metric Mapping

  • Peter Lorenzen
  • Brad C. Davis
  • Sarang Joshi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3750)


The construction of population atlases is a key issue in medical image analysis, and particularly in brain mapping. Large sets of images are mapped into a common coordinate system to study intra-population variability and inter-population differences, to provide voxel-wise mapping of functional sites, and to facilitate tissue and object segmentation via registration of anatomical labels. We formulate the unbiased atlas construction problem as a Fréchet mean estimation in the space of diffeomorphisms via large deformations metric mapping. A novel method for computing constant speed velocity fields and an analysis of atlas stability and robustness using entropy are presented. We address the question: how many images are required to build a stable brain atlas?


Computational anatomy Brain Atlases Image Metric Space 


  1. 1.
    Grenander, U., Miller, M.: Computational anatomy: an emerging discipline. Quarterly of Applied Mathematics 56, 617–694 (1998)MATHMathSciNetGoogle Scholar
  2. 2.
    Toga, A.W.: An Introduction to Brain Warping. Academic Press, San Diego (1999)Google Scholar
  3. 3.
    Gee, J.C., Reivich, M., Bajcsy, R.: Elastically deforming an atlas to match anatomical brain images. Journal of Computer Assisted Tomography 17, 225–236 (1993)CrossRefGoogle Scholar
  4. 4.
    Miller, M.I., Younes, L.: Group actions, homeomorphisms, and matching: A general framework. Internation Journal of Computer Vision (IJCV) 41, 61–84 (2001)CrossRefMATHGoogle Scholar
  5. 5.
    Rohlfing, T., Russakoff, D.B., Calvin, R., Mauerer, J.: Extraction and application of expert priors to combine multiple segmentations of human brain tissue. In: Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI), vol. 2732, pp. 578–585. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Thompson, P.M., Toga, A.W.: A framework for computational anatomy. Computing and Visualization in Science 5, 13–34 (2002)CrossRefMATHGoogle Scholar
  7. 7.
    Avants, B., Gee, J.C.: Geodesic estimation for large deformation anatomical shape averaging and interpolation. NeuroImage (suppl. 1), S139–S150 (2004)Google Scholar
  8. 8.
    Bhatia, K.K., Hajnal, J.V., Puri, B.K., Edwards, A.D., Ruekert, D.: Consistent groupwise non-rigid registration for atlas construction. In: Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI), pp. 908–911 (2004)Google Scholar
  9. 9.
    Guimond, A., Meunier, J., Thirion, J.P.: Average brain models: a convergence study. Computer Vision and Image Understanding 77, 192–210 (2000)CrossRefGoogle Scholar
  10. 10.
    Joshi, S., Miller, M.I.: Landmark matching via large deformation diffeomorphisms. IEEE Transactions on Image Processing (TIP) 9, 1357–1370 (2000)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage: Supplement issue on Mathematics in Brain Imaging 23, S151–S160 (2004)Google Scholar
  12. 12.
    Fréchet, M.: Les elements aleatoires de nature quelconque dans un espace distancie. Annales De L’Institut Henri Poincare 10, 215–310 (1948)Google Scholar
  13. 13.
    Beg, M.F.: Variational and Computational Methods for Flows of Diffeomorphisms in Image Matching and Growth in Computational Anatomy. PhD thesis, The Johns Hopkins University (2003)Google Scholar
  14. 14.
    Guillemaud, R., Brady, M.: Estimating the bias field of MR images. IEEE Transactions on Medical Imaging (TMI) 16, 878–886 (1997)CrossRefGoogle Scholar
  15. 15.
    Atkinson, D., Hill, D.L.G., Stoyle, P.N.R., Summers, P.E., Keevil, S.F.: Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion. IEEE Transactions on Medical Imaging (TMI) 16, 903–910 (1997)CrossRefGoogle Scholar
  16. 16.
    Twining, C., Marsland, S., Taylor, C.: Measuring geodesic distances on the space of bounded diffeomorphisms. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 847–856. BVMA Press (2002)Google Scholar
  17. 17.
    Cover, T., Thomas, J.: Elements of Information Theory. John Wiley and Sons, Inc., New York (1991)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Peter Lorenzen
    • 1
  • Brad C. Davis
    • 1
  • Sarang Joshi
    • 1
    • 2
  1. 1.Department of Computer ScienceUniversity of North CarolinaChapel HillUSA
  2. 2.Department of Radiation OncologyUniversity of North CarolinaChapel HillUSA

Personalised recommendations