Hybrid Formulation of the Model-Based Non-rigid Registration Problem to Improve Accuracy and Robustness

  • Olivier Clatz
  • Hervé Delingette
  • Ion-Florin Talos
  • Alexandra J. Golby
  • Ron Kikinis
  • Ferenc A. Jolesz
  • Nicholas Ayache
  • Simon K. Warfield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3750)

Abstract

We present a new algorithm to register 3D pre-operative Magnetic Resonance (MR) images with intra-operative MR images of the brain. This algorithm relies on a robust estimation of the deformation from a sparse set of measured displacements. We propose a new framework to compute iteratively the displacement field starting from an approximation formulation (minimizing the sum of a regularization term and a data error term) and converging toward an interpolation formulation (least square minimization of the data error term). The robustness of the algorithm is achieved through the introduction of an outliers rejection step in this gradual registration process. We ensure the validity of the deformation by the use of a biomechanical model of the brain specific to the patient, discretized with the finite element method. The algorithm has been tested on six cases of brain tumor resection, presenting a brain shift up to 13 mm.

Keywords

Anisotropy Convolution Lution Reso Talos 

References

  1. 1.
    Audette, M.: Anatomical Surface Identifcation, Range-sensing and Registration for Characterizing Intrasurgical Brain Deformations. PhD thesis, McGill University (2003)Google Scholar
  2. 2.
    Ferrant, M., Nabavi, A., Macq, B., Black, P., Jolesz, F., Kikinis, R., Warfield, S.: Serial registration of intraoperative MR images of the brain. Medical Image Analysis 6, 337–360 (2002)CrossRefGoogle Scholar
  3. 3.
    Yeung, F., Levinson, S., Fu, D., Parker, K.: Feature-adaptive motion tracking of ultrasound image sequences using a deformable mesh. IEEE Transactions on Medical Imaging 17, 945–956 (1998)CrossRefGoogle Scholar
  4. 4.
    Rohr, K., Stiehl, H., Sprengel, R., Buzug, T., Weese, J., Kuhn, M.: Landmark-based elastic registration using approximating thin-plate splines. IEEE Transactions on Medical Imaging 20, 526–534 (2001)CrossRefGoogle Scholar
  5. 5.
    Rexilius, J., Warfield, S.K., Guttmann, C.R.G., Wei, X., Benson, R., Wolfson, L., Shenton, M.E., Handels, H., Kikinis, R.: A novel nonrigid registration algorithm and applications. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 923–931. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Frey, P.J., George, P.L.: Mesh Generation. Hermes Science Publications (2000)Google Scholar
  7. 7.
    Rousseeuw, P.: Least median-of-squares regression. Journal of the American Statistical Association 79, 871–880 (1984)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Olivier Clatz
    • 1
    • 2
  • Hervé Delingette
    • 1
  • Ion-Florin Talos
    • 2
  • Alexandra J. Golby
    • 2
  • Ron Kikinis
    • 2
  • Ferenc A. Jolesz
    • 2
  • Nicholas Ayache
    • 1
  • Simon K. Warfield
    • 3
  1. 1.Epidaure Research ProjectINRIA Sophia AntipolisFrance
  2. 2.Surgical Planning LaboratoryHarvard Medical SchoolBostonUSA
  3. 3.Computational Radiology Laboratory, Brigham and Women’s Hospital, Children’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations