Advertisement

Automatic Patient Registration for Port Placement in Minimally Invasixe Endoscopic Surgery

  • Marco Feuerstein
  • Stephen M. Wildhirt
  • Robert Bauernschmitt
  • Nassir Navab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3750)

Abstract

Optimal port placement is a delicate issue in minimally invasive endoscopic surgery, particularly in robotically assisted surgeey. A good choice of the instruments’ and endoscope’s ports can avoid time-consuming consecutive new port placement. We present a novel method to intuitively and precisely plan the port placement. The patient is registered to its pre-operative CT by just moving the endoscope around fiducials, which are attached to the patient’s thorax and are visible in its CT. Their 3D positions are automatically reconstructed. Without prior time-consuming segmentation, the pre-operative CT volume is directly rendered with respect to the endoscope or instruments. This enables the simulation of a camera flight through the patient’s interior along the instruments’ axes to easily validate possible ports.

Keywords

Augmented Reality Port Placement Epipolar Geometry Dual Quaternion Camera Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adhami, L., Coste-Manière, È.: A versatile system for computer integrated mini-invasive robotic surgery. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 272–281. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Chiu, A.M., Dey, D., Drangova, M., Boyd, W.D., Peters, T.M.: 3-d image guidance for minimally invasive robotic coronary artery bypass. HSF 3, 224–231 (2000)Google Scholar
  3. 3.
    Selha, S.D., Dupont, P.E., Howe, R.D., Torchiana, D.F.: Dexterity optimization by port placement in robot-assisted minimally invasive surgery. In: Proceedings of SPIE TTT VIII, vol. 4570, pp. 97–104 (2002)Google Scholar
  4. 4.
    Traub, J., Feuerstein, M., Bauer, M., Schirmbeck, E.U., Najafi, H., Bauernschmitt, R., Klinker, G.: Augmented reality for port placement and navigation in robotically assisted minimally invasive cardiovascular surgery. In: CARS 2004, Chicago, USA, pp. 735–740 (2004)Google Scholar
  5. 5.
    Tsai, R., Lenz, R.: Real time versatile robotics hand/eye calibration using 3d machine vision. In: CRA 1988, pp. 554–561 (1988)Google Scholar
  6. 6.
    Daniilidis, K.: Hand-eye calibration using dual quaternions. The International Journal of Robotics Research 18, 286–298 (1999)CrossRefGoogle Scholar
  7. 7.
    Mourgues, F., Coste-Manière, È.: Flexible calibration of actuated stereoscopic endoscope for overlay in robot assisted surgery. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 25–34. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Bouguet, J.Y.: Camera calibration toolbox for Matlab (2004), http://www.vision.caltech.edu/bouguetj/calib_doc/
  9. 9.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004) ISBN: 0521540518 zbMATHGoogle Scholar
  10. 10.
    Wang, M.Y., Maurer, C.R., Fitzpatrick, J.M., Maciunas, R.J.: An automatic technique for finding and localizing externally attached markers in ct and mr volume images of the head. IEEE Trans. Bio. Med. Eng. 43, 627–637 (1996)CrossRefGoogle Scholar
  11. 11.
    Nicolau, S., Garcia, A., Pennec, X., Soler, L., Ayache, N.: Augmented reality guided radio-frequency tumor ablation. CAVW 16 (2005)Google Scholar
  12. 12.
    Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision. Prentice Hall PTR, Englewood Cliffs (1998)Google Scholar
  13. 13.
    Sturm, P., Ramalingam, S., Lodha, S.K.: On calibration, structure-from-motion and multi-view geometry for panoramic camera models. In: Panoramic Photogrammetry Workshop, Berlin, Germany (2005)Google Scholar
  14. 14.
    Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 18, 377–388 (1996)CrossRefGoogle Scholar
  15. 15.
    Walker, M.W., Shao, L., Volz, R.A.: Estimating 3-d location parameters using dual number quaternions. CVGIP: Image Underst 54, 358–367 (1991)CrossRefzbMATHGoogle Scholar
  16. 16.
    Shahidi, R., et al.: Implementation, calibration and accuracy testing of an image-enhanced endoscopy system. IEEE Trans. Med. Imaging 21, 1524–1535 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Marco Feuerstein
    • 1
    • 2
  • Stephen M. Wildhirt
    • 2
  • Robert Bauernschmitt
    • 2
  • Nassir Navab
    • 1
  1. 1.Computer Aided Medical Procedures (CAMP) GroupTU MunichGermany
  2. 2.Department of Cardiothoracic SurgeryGerman Heart Center MunichGermany

Personalised recommendations