Advertisement

Learning Based Non-rigid Multi-modal Image Registration Using Kullback-Leibler Divergence

  • Christoph Guetter
  • Chenyang Xu
  • Frank Sauer
  • Joachim Hornegger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3750)

Abstract

The need for non-rigid multi-modal registration is becoming increasingly common for many clinical applications. To date, however, existing proposed techniques remain as largely academic research effort with very few methods being validated for clinical product use. It has been suggested by Crum et al. [1] that the context-free nature of these methods is one of the main limitations and that moving towards context-specific methods by incorporating prior knowledge of the underlying registration problem is necessary to achieve registration results that are accurate and robust enough for clinical applications. In this paper, we propose a novel non-rigid multi-modal registration method using a variational formulation that incorporates a prior learned joint intensity distribution. The registration is achieved by simultaneously minimizing the Kullback-Leibler divergence between an observed and a learned joint intensity distribution and maximizing the mutual information between reference and alignment images. We have applied our proposed method on both synthetic and real images with encouraging results.

Keywords

Mutual Information Image Registration Registration Result Alignment Image Registration Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Crum, W., Griffin, L., Hill, D., Hawkes, D.: Zen and the art of medical image registration: correspondence, homology, and quality. NeuroImage 20, 1425–1437 (2003)CrossRefGoogle Scholar
  2. 2.
    Wells, W., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. MIA 1, 35–51 (1996)Google Scholar
  3. 3.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE TMI 16, 187–198 (1997)Google Scholar
  4. 4.
    Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Mutual-information-based registration of medical images: a survey. IEEE TMI 22, 986–1004 (2003)Google Scholar
  5. 5.
    Maes, F., Vandermeulen, D., Suetens, P.: Medical image registration using mutual information. Proceedings of the IEEE 91, 1699–1722 (2003)CrossRefGoogle Scholar
  6. 6.
    Hermosillo, G., Chefd’Hotel, C., Faugeras, O.: Variational methods for multimodal image matching. IJCV 50, 329–343 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    D’Agostino, E., Modersitzki, J., Maes, F., Vandermeulen, D., Fischer, B., Suetens, P.: Free-form registration using mutual information and curvature regularization. In: WBIR, pp. 11–20 (2003)Google Scholar
  8. 8.
    Gaens, T., Maes, F., Vandermeulen, D., Suetens, P.: Non-rigid multimodal image registration using mutual information. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1099–1106. Springer, Heidelberg (1998)Google Scholar
  9. 9.
    Leventon, M., Grimson, E.: Multi-modal volume registration using joint intensity distributions. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1057–1066. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Chung, A.C.S., Wells, W.M., Norbash, A., Grimson, W.E.L.: Multi-modal image registration by minimising Kullback-Leibler distance. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 525–532. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Gan, R., Wu, J., Chung, A.C.S., Yu, S.C.H., Wells III, W.M.: Multiresolution image registration based on Kullback-Leibler distance. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 599–606. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Zöllei, L., Fisher, J.W., Wells III, W.M.: A unified statistical and information theoretic framework for multi-modal image registration. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 366–377. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Lorenzen, P., Davis, B., Gerig, G., Bullitt, E., Joshi, S.C.: Multi-class posterior atlas formation via unbiased Kullback-Leibler template estimation. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 95–102. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Collins, D., Zijdenbos, A., Kollokian, V., Sled, J., Kabani, N., Holmes, C., Evans, A.: Design and construction of a realistic digital brain phantom. IEEE TMI 17, 463–468 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Christoph Guetter
    • 1
    • 2
  • Chenyang Xu
    • 1
  • Frank Sauer
    • 1
  • Joachim Hornegger
    • 2
  1. 1.Imaging & Visualization DepartmentSiemens Corporate ResearchPrincetonUSA
  2. 2.Institute of Computer ScienceUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations