Schwarz Meets Schwann: Design and Fabrication of Biomorphic Tissue Engineering Scaffolds

  • Srinivasan Rajagopalan
  • Richard A. Robb
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3749)

Abstract

Tissue engineering is a discipline at the leading edge of the field of computer assisted intervention. This multidisciplinary engineering science is based on the notion of design and fabrication of scaffolds- porous, three-dimensional "trellis-like" biomimetic structures that, on implantation, provide a viable environment to recuperate and regenerate damaged cells. Existing CAD-based approaches produce porous labyrinths with contra-naturam straight edges. The biomorphic geometry that mimics the secundam-naturam substrate would be one that is continuous through all space, partitioned into two not-necessarily-equal sub-spaces by a non-intersecting, two-sided surface. Minimal surfaces are ideal to describe such a space. We present results on the premier attempt in computer controlled fabrication and mechanical characterization of Triply Periodic Minimal Surfaces [TPMS]. This initiative is a significant step to link Schwann’s 1838 cell theory with Schwarz’s discovery of TPMS in 1865 to fabricate the previously elusive optimal biomorphic tissue analogs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yaszemski, M.J., Payne, R.J., Hayes, W.C., Langer, R., Mikos, A.G.: Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 17, 175–185 (1996)CrossRefGoogle Scholar
  2. 2.
    Hutmacher, D.W., Sittinger, M., Risbud, M.V.: Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends in Biotechnology 22(7), 354–362 (2004)CrossRefGoogle Scholar
  3. 3.
    Spalazzi, J.P., Dionisio, K.L., Jiang, J., Lu, K.K.: Osteoblast and Chondrocyte interactions during coculture on scaffolds. IEEE Eng. Med & Biol. 22(5), 27–34 (2003)CrossRefGoogle Scholar
  4. 4.
    Lord, E.A., Mackay, A.L.: Periodic minimal surfaces of cubic symmetry. Current Science 85(3), 346–362 (2003)MathSciNetGoogle Scholar
  5. 5.
    Meusnier JBMC. Mem. Mathem. Phys. Acad. Sci. Paris, pres. par. div. Savans 10, 477–510 (1785)Google Scholar
  6. 6.
    Schwarz, H.: Gesammelte Mathematische Abhandlungen, vol. 1, 2. Springer, Berlin (1890)MATHGoogle Scholar
  7. 7.
    Schoen, A.H.: Infinite periodic minimal surfaces without self-intersections NASA Technical report TN D-5541, Washington DC (1970)Google Scholar
  8. 8.
    Hyde, S., Andersson, S., Larsson, Z., Blum, T., Landh, S., Lidin, B.W., Ninham, B.W.: The Language of Shape. In: The Role of curvature in Condensed Matter: Physics, Chemistry and Biology. Elsevier, Amsterdam (1997)Google Scholar
  9. 9.
    Pinkall, U., Polthier, K.: Computing Discrete Minimal Surfaces and their conjugates. Experimental Mathematics 2, 15–36 (1993)MATHMathSciNetGoogle Scholar
  10. 10.
    Mackay, A.L.: Periodic minimal surfaces from finite element methods. Chem. Phys. Lett. 221, 317–321 (1994)CrossRefGoogle Scholar
  11. 11.
    Brakke, K.A.: The Surface Evolver. Experimental Mathematics 1(2), 141–165 (1992)MATHMathSciNetGoogle Scholar
  12. 12.
    Mackay, A.L.: Periodic minimal surfaces. Nature 314, 604–606 (1985)CrossRefGoogle Scholar
  13. 13.
    Landh, T.: FEBS Lett. 369, 13 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Srinivasan Rajagopalan
    • 1
  • Richard A. Robb
    • 1
  1. 1.Biomedical Engineering ResourceMayo Clinic College of MedicineRochesterUSA

Personalised recommendations