Coding by Neural Population Oscillations?

  • Francesco Ventriglia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3704)


The search of the code underlying the transmission of information through the different stages of integration of the brain is a very active investigation field. Here, the possible involvement in the neural code of global population oscillatory activities has been discussed. The behaviorally important rhythmic activities of the hippocampal CA3 field have been analyzed to this aim. The genesis and the features of such activities have been studied by the computer simulation of a model of the entire CA3. The simulation demonstrated the ability of the network of inhibitory interneurons to control nicely the transmission of activity through the pyramidal population. The results suggested that the hippocampal formation and the CA3 field—in particular—could be organized in a way to allow the passing of excitatory activities only during specific and narrow time windows, confined by inhibitory barrages possibly linked to attentional processes.


Pyramidal Neuron Inhibitory Neuron Spiral Wave Theta Rhythm Medial Septum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abeles, M.: Role of the cortical neuron: integrator or coincidence detector? Isr. J. Med. Sci. 18, 83–92 (1982)Google Scholar
  2. 2.
    Abeles, M.: Corticonics: neural circuits of the cerebral cortex, New York, Cambridge (1991)Google Scholar
  3. 3.
    Buzsaki, G., Chrobak, J.J.: Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol. 5, 504–510 (1995)CrossRefGoogle Scholar
  4. 4.
    Cohen, N.J., Eichenbaum, H.: Memory, amnesia, and the hippocampal system. The MIT Press, Cambridge-London (1993)Google Scholar
  5. 5.
    Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A., Buzsaki, G.: Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving Rat. J. Neurosci. 19, 274–287 (1999)Google Scholar
  6. 6.
    Draguhn, A., Traub, R.D., Bibbig, A., Schmitz, D.: Ripple (approximately 200-Hz) oscillations in temporal structures. J. Clin. Neurophysiol. 17, 361–376 (2000)CrossRefGoogle Scholar
  7. 7.
    Harris-White, M.E., Zanotti, S.A., Frautschy, S.A., Charles, A.: Spiral intercellular calcium waves in hippocampal slice cultures. J. Neurophysiol. 79, 1045–1052 (1998)Google Scholar
  8. 8.
    Huang, X., Troy, W.C., Yang, Q., Ma, H., Laing, C.R., Schiff, S.J., Wu, J.Y.: Spiral waves in disinhibited mammalian neocortex. J. Neurosci. 24, 9897–9902 (2004)CrossRefGoogle Scholar
  9. 9.
    Hubel, D.H., Wiesel, T.: Early exploration of the visual cortex. Neuron 20, 401–412 (1998)CrossRefGoogle Scholar
  10. 10.
    Kandel, A., Buzsaki, G.: Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. J. Neurosci. 17, 6783–6797 (1997)Google Scholar
  11. 11.
    Mountcastle, V.: The columnar organization of the neocortex. Brain 120, 701–722 (1997)CrossRefGoogle Scholar
  12. 12.
    Paxinos, G., Watson, C.: The rat brain in stereotaxic coordinates. Academic Press, San Diego-Toronto (1986)Google Scholar
  13. 13.
    Shadlen, M.N., Newsome, W.T.: Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4, 569–579 (1994)CrossRefGoogle Scholar
  14. 14.
    Shadlen, M.N., Newsome, W.: Is there a signal in the noise? Curr. Opin. Neurobiol. 5, 248–250 (1995)CrossRefGoogle Scholar
  15. 15.
    Shadlen, M.N., Newsome, W.T.: The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998)Google Scholar
  16. 16.
    Softky, W.R.: Simple codes versus efficient codes. Curr. Opin. Neurobiol. 5, 239–247 (1995)CrossRefGoogle Scholar
  17. 17.
    Stevens, C.F., Zador, A.M.: Input synchrony and the irregular firing of cortical neurons. Nat. Neurosci. 1, 210–217 (1998)CrossRefGoogle Scholar
  18. 18.
    Traub, R.D., Bibbig, A., LeBeau, F.E., Cunningham, M.O., Whittington, M.A.: Persistent gamma oscillations in superficial layers of rat auditory neocortex: experiment and model. J. Physiol. 562, 3–8 (2005)CrossRefGoogle Scholar
  19. 19.
    Traub, R.D., Cunningham, M.O., Gloveli, T., LeBeau, F.E., Bibbig, A., Buhl, E.H., Whittington, M.A.: GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations. Proc. Natl. Acad. Sci. U. S. A. 100, 11047–11052 (2003)CrossRefGoogle Scholar
  20. 20.
    Ventriglia, F.: Kinetic approach to neural systems. I. Bull. Math. Biol. 36, 534–544 (1974)Google Scholar
  21. 21.
    Ventriglia, F.: Activity in cortical-like neural systems: short-range effects and attention phenomena. Bull. Math. Biol. 52, 397–429 (1990)zbMATHGoogle Scholar
  22. 22.
    Ventriglia, F.: Towards a kinetic theory of cortical-like neural fields. In: Ventriglia, F. (ed.) Neural Modeling and Neural Networks, pp. 217–249. Pergamon Press, Oxford-New York (1994)Google Scholar
  23. 23.
    Ventriglia, F.: Computational experiments support a competitive function in the CA3 region of the hippocampus. Bull. Math. Biol. 60, 373–407 (1998)zbMATHCrossRefGoogle Scholar
  24. 24.
    Ventriglia, F., Di Maio, V.: Neural code and irregular spike trains. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds.) BVAI 2005. LNCS, vol. 3704, pp. 89–98. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Vinogradova, O.S.: Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus 11, 578–598 (2001)CrossRefGoogle Scholar
  26. 26.
    Winfree, A.T.: The geometry of biological time. Springer, New York (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Francesco Ventriglia
    • 1
  1. 1.Istituto di Cibernetica ”E. Caianiello”Pozzuli (NA)Italy

Personalised recommendations