Single Image Estimation of Facial Albedo Maps

  • William A. P. Smith
  • Edwin R. Hancock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3704)


This paper describes how a facial albedo map can be recovered from a single image using a statistical model that captures variations in surface normal direction. We fit the model to intensity data using constraints on the surface normal direction provided by Lambert’s law and then use the differences between observed and reconstructed image brightness to estimate the albedo map. We show that this process is stable under varying illumination and use the process to render images under novel illumination.


Training Image Facial Shape Active Appearance Model Cast Shadow Generative Statistical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang, R., Tsai, P.S., Cryer, J.E., Shah, M.: Shape-from-shading: a survey. IEEE Trans. PAMI 21, 690–706 (1999)Google Scholar
  2. 2.
    Johnston, A., Hill, H., Carman, N.: Recognising faces: effects of lighting direction, inversion, and brightness reversal. Perception 21, 365–375 (1992)CrossRefGoogle Scholar
  3. 3.
    Gregory, R.L.: Knowledge in perception and illusion. Phil. Trans. R. Soc. Lond. B 352, 1121–1128 (1997)CrossRefGoogle Scholar
  4. 4.
    Castelán, M., Hancock, E.R.: Acquiring height maps of faces from a single image. In: Proc. 3DPVT, pp. 183–190 (2004)Google Scholar
  5. 5.
    Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. PAMI 23, 643–660 (2001)Google Scholar
  6. 6.
    Atick, J.J., Griffin, P.A., Redlich, A.N.: Statistical approach to SFS: Reconstruction of 3D face surfaces from single 2D images. Neural Comp. 8, 1321–1340 (1996)CrossRefGoogle Scholar
  7. 7.
    Zhao, W.Y., Chellappa, R.: Illumination-insensitive face recognition using symmetric SFS. In: Proc. CVPR, pp. 286–293 (2000)Google Scholar
  8. 8.
    Samaras, D., Metaxas, D.: Illumination constraints in deformable models for shape and light direction estimation. IEEE Trans. PAMI 25, 247–264 (2003)Google Scholar
  9. 9.
    Prados, E., Faugeras, O.: A rigorous and realistic shape from shading method and some of its applications. Technical Report RR-5133, INRIA (2004)Google Scholar
  10. 10.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Costen, N.P., Cootes, T.F., Edwards, G.J., Taylor, C.J.: Automatic extraction of the face identity-subspace. Image and Vision Computing 20, 319–329 (2002)CrossRefGoogle Scholar
  12. 12.
    Turk, M., Pentland, A.: Face recognition using eigenfaces. In: IEEE Conf. CVPR, pp. 586–591 (1991)Google Scholar
  13. 13.
    Xiao, J., Baker, S., Matthews, I., Kanade, T.: Real-time combined 2D+3D active appearance models. In: Proc. IEEE Conf. CVPR, pp. 535–542 (2004)Google Scholar
  14. 14.
    Bruce, V., Coombes, A., Richards, R.: Describing the shapes of faces using surface primitives. Image and Vision Computing 11, 353–363 (1993)CrossRefGoogle Scholar
  15. 15.
    Marschner, S.R., Guenter, B., Raghupathy, S.: Modeling and rendering for realistic facial animation. In: Proc. 11th Eurographics Workshop on Rendering, pp. 231–242 (2000)Google Scholar
  16. 16.
    van Gemert, M.J.C., Jacques, S.L., Sterenborg, H.J.C.M., Star, W.M.: Skin optics. IEEE Transactions on Biomedical Engineering 36, 1146–1154 (1989)CrossRefGoogle Scholar
  17. 17.
    Marschner, S., Westin, S., Lafortune, E., Torrance, K., Greenberg, D.: Reflectance measurements of human skin. Technical Report PCG-99-2, Program of Computer Graphics, Cornell University (1999)Google Scholar
  18. 18.
    Lanitis, A., Taylor, C.J., Cootes, T.F.: Towards automatic simulation of ageing effects on face images. IEEE Trans. PAMI 24, 442–455 (2002)Google Scholar
  19. 19.
    Matthews, I., Cootes, T.F., Bangham, J.A.: Extraction of visual features for lipreading. IEEE Trans. PAMI 24, 198–213 (2002)Google Scholar
  20. 20.
    Blake, A.: Boundary conditions for lightness computation in mondrian world. In: Computer Vision, Graphics and Image Processing, vol. 32, pp. 314–327 (1985)Google Scholar
  21. 21.
    Smith, W., Robles-Kelly, A., Hancock, E.R.: Reflectance correction for perspiring faces. In: Proc. ICIP, pp. 1389–1392 (2004)Google Scholar
  22. 22.
    Sirovich, L.: Turbulence and the dynamics of coherent structures. Quart. Applied Mathematics XLV, 561–590 (1987)Google Scholar
  23. 23.
    Worthington, P.L., Hancock, E.R.: New constraints on data-closeness and needle map consistency for shape-from-shading. IEEE Trans. PAMI 21, 1250–1267 (1999)Google Scholar
  24. 24.
    USF HumanID 3D Face Database, Courtesy of Sudeep. Sarkar, University of South Florida, Tampa, FLGoogle Scholar
  25. 25.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Computer Graphics Proc. SIGGRAPH, pp. 187–194 (1999)Google Scholar
  26. 26.
    Belhumeur, P.N., Hespanha, J., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. PAMI 17, 711–720 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • William A. P. Smith
    • 1
  • Edwin R. Hancock
    • 1
  1. 1.Department of Computer ScienceThe University of York 

Personalised recommendations