Symmetry Definitions for Constraint Satisfaction Problems

  • David Cohen
  • Peter Jeavons
  • Christopher Jefferson
  • Karen E. Petrie
  • Barbara M. Smith
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3709)

Abstract

We review the many different definitions of symmetry for constraint satisfaction problems (CSPs) that have appeared in the literature, and show that a symmetry can be defined in two fundamentally different ways: as an operation preserving the solutions of a CSP instance, or else as an operation preserving the constraints. We refer to these as solution symmetries and constraint symmetries. We define a constraint symmetry more precisely as an automorphism of a hypergraph associated with a CSP instance, the microstructure complement. We show that the solution symmetries of a CSP instance can also be obtained as the automorphisms of a related hypergraph, the k-ary nogood hypergraph and give examples to show that some instances have many more solution symmetries than constraint symmetries. Finally, we discuss the practical implications of these different notions of symmetry.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguirre, A.: How to Use Symmetries in Boolean Constraint Solving. In: Benhamou, F., Colmerauer, A. (eds.) Constraint Logic Programming: Selected Research, pp. 287–306. MIT Press, Cambridge (1992)Google Scholar
  2. 2.
    Backofen, R., Will, S.: Excluding Symmetries in Constraint-Based Search. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 73–87. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Benhamou, B.: Study of symmetry in constraint satisfaction problems. In: Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 246–254. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Benhamou, B., Sais, L.: Theoretical study of symmetries in propositional calculus and applications. In: Kapur, D. (ed.) CADE 1992. LNCS (LNAI), vol. 607, pp. 281–294. Springer, Heidelberg (1992)Google Scholar
  5. 5.
    Brown, C.A., Finkelstein, L., Purdom, P.W.: Backtrack Searching in the Presence of Symmetry. In: Mora, T. (ed.) AAECC 1988. LNCS, vol. 357, pp. 99–110. Springer, Heidelberg (1989)Google Scholar
  6. 6.
    Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-Breaking Predicates for Search Problems. In: Proceedings KR 1996, November 1996, pp. 149–159 (1996)Google Scholar
  7. 7.
    Fahle, T., Schamberger, S., Sellmann, M.: Symmetry Breaking. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 93–239. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Focacci, F., Milano, M.: Global Cut Framework for Removing Symmetries. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 77–92. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Freuder, E.C.: Eliminating Interchangeable Values in Constraint Satisfaction Problems. In: Proceedings AAAI 1991, vol. 1, pp. 227–233 (1991)Google Scholar
  10. 10.
    Gent, I.P., Harvey, W., Kelsey, T., Linton, S.: Generic SBDD using Computational Group Theory. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 333–347. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Gent, I.P., Smith, B.M.: Symmetry Breaking During Search in Constraint Programming. In: Horn, W. (ed.) Proceedings ECAI 2000, pp. 599–603 (2000)Google Scholar
  12. 12.
    Jégou, P.: Decomposition of Domains Based on the Micro-Structure of Finite Constraint-Satisfaction Problems. In: Proceedings AAAI 1993, pp. 731–736 (1993)Google Scholar
  13. 13.
    McKay, B.: Practical Graph Isomorphism. Congressus Numerantium 30, 45–87 (1981); The software tool NAUTY is available for download from, http://cs.anu.edu.au/~bdm/nauty/+ MATHMathSciNetGoogle Scholar
  14. 14.
    Meseguer, P., Torras, C.: Exploiting symmetries within constraint satisfaction search. Artificial Intelligence 129, 133–163 (2001)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Puget, J.-F.: On the Satisfiability of Symmetrical Constrained Satisfaction Problems. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 350–361. Springer, Heidelberg (1993)Google Scholar
  16. 16.
    Ramani, A., Markov, I.L.: Automatically Exploiting Symmetries in Constraint Programming. In: Faltings, B.V., Petcu, A., Fages, F., Rossi, F. (eds.) CSCLP 2004. LNCS (LNAI), vol. 3419, pp. 98–112. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Roy, P., Pachet, F.: Using Symmetry of Global Constraints to Speed up the Resolution of Constraint Satisfaction Problems. In: Workshop on Non Binary Constraints, ECAI 1998 (August 1998)Google Scholar
  18. 18.
    Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • David Cohen
    • 1
  • Peter Jeavons
    • 2
  • Christopher Jefferson
    • 3
  • Karen E. Petrie
    • 4
  • Barbara M. Smith
    • 4
  1. 1.Department of Computer Science, Royal HollowayUniversity of LondonUK
  2. 2.Computing LaboratoryUniversity of OxfordUK
  3. 3.Department of Computer ScienceUniversity of YorkUK
  4. 4.Cork Constraint Computation CentreUniversity College CorkIreland

Personalised recommendations