Advertisement

Fast Generic Model-Checking for Data-Based Systems

  • Dezhuang Zhang
  • Rance Cleaveland
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3731)

Abstract

This paper shows how predicate equation systems (PESs) may be used to solve model-checking problems for systems, such as those involving real-time or value passing, that manipulate data. PESs are first defined and the encoding of model-checking problems described; then generic global and local approaches for solving PESs are given. Real-time model checking is then considered in detail, and a new, efficient on-the-fly technique for real-time model checking based on proof search in PESs is developed and experimentally shown to significantly outperform existing approaches when system specifications or formula specifications contain errors and to be competitive when both are correct.

Keywords

Model Check Proof System Proof Rule State Predicate Symbolic Model Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alur, R., Courcoubetis, C., Dill, D., Halbwachs, N., Wong-Toi, H.: An implementation of three algorithms for timing verification based on automata emptiness. In: RTSS 1992 (1992)Google Scholar
  2. 2.
    Andersen, H.R.: Model checking and boolean graphs. Theoretical Computer Science 126(1) (1994)Google Scholar
  3. 3.
    Balarin, F.: Approximate reachability analysis of timed automata. In: IEEE RTSS 1996 (1996)Google Scholar
  4. 4.
    Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi, W.: Uppaal implementation secrets. In: FTRTFT 2002 (2002)Google Scholar
  5. 5.
    Berezin, S.: Model Checking and Theorem Proving: a Unified Framework. PhD thesis, Carnegie Mellon University (2002)Google Scholar
  6. 6.
    Bultan, T., Gerber, R., Pugh, W.: Symbolic model checking of infinite state systems using presburger arithmetic. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. In: Proceedings of the 5th IEEE Symposium on Logic in Computer Science, Philadelphia, PA, pp. 428–439 (1990)Google Scholar
  8. 8.
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  9. 9.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  10. 10.
    Cleaveland, R., Riely, J.: Testing-based abstractions for concurrent systems. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 417–432. Springer, Heidelberg (1994)Google Scholar
  11. 11.
    Cleaveland, R., Steffen, B.: A linear-time model-checking algorithm for the alternationfree modal mu-calculus. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 48–58. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  12. 12.
    Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger arithmetic. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool kronos. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, Springer, Heidelberg (1989)Google Scholar
  15. 15.
    Du, X., Ramakrishnan, C.R., Smolka, S.A.: Tabled resolution + constraints: A recipe for model checking real-time systems. In: RTSS 2000 (2000)Google Scholar
  16. 16.
    Groote, J.F., Willemse, T.A.C.: A checker for modal formulas for processes with data. Technical report, Technische Universiteit Eindhoven, The Neitherlands (2002)Google Scholar
  17. 17.
    Hennessy, M., Liu, X.: A modal logic for message passing processes. Acta Informatica 32(4), 375–393 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for realtime systems. Information and Computation 111(2) (1994)Google Scholar
  19. 19.
    Bradfield, J., Stirling, C.: Local model checking for infinite state spaces. Theoretical Computer Science 96, 157–174 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshel. Software Tools for Technology Transfer 1, 134–152 (1997)CrossRefzbMATHGoogle Scholar
  21. 21.
    Lin, H.: Symbolic graphs with assignment. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 50–65. Springer, Heidelberg (1996)Google Scholar
  22. 22.
    Mader, A.: Verification of Modal Properties Using Boolean Equation Systems. PhD thesis, Müchen, Techn-Univ. (1997)Google Scholar
  23. 23.
    Mateescu, R.: Local model-checking of an alternation-free value-based modal mu-calculus. In: VMCAI 1998 (September 1998)Google Scholar
  24. 24.
    Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in Cesar. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137. Springer, Heidelberg (1982)Google Scholar
  25. 25.
    Ramakrishnan, C.R.: A model checker for value-passing mu-calculus using logic programming. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990, p. 1. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Rathke, J., Hennessy, M.: Local model checking for value-passing processes. In: Ito, T., Abadi, M. (eds.) TACS 1997. LNCS, vol. 1281. Springer, Heidelberg (1997)Google Scholar
  27. 27.
    Sokolsky, O., Smolka, S.: Local model checking for real-time systems. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939. Springer, Heidelberg (1995)Google Scholar
  28. 28.
    Szalas, A.: Logic for computer science. lecture notes, http://www.ida.liu.se/~andsz
  29. 29.
    Szałas, A.: On natural deduction in first-order fixpoint logics. Fundamenta Informaticae 26, 81–94 (1996)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Tan, L., Cleaveland, R.: Evidence-based model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 455. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  31. 31.
    Wang, F.: Efficient verification of timed automata with BDD-like data-structures. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 189–205. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  32. 32.
    Yovine, S.: A verification tool for real-time systems. Software Tools for Technology Transfer 1, 123–133 (1997)CrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2005

Authors and Affiliations

  • Dezhuang Zhang
    • 1
  • Rance Cleaveland
    • 1
  1. 1.Department of Computer ScienceState University of New York at Stony BrookUSA

Personalised recommendations