The Dynamic And-Or Quorum System

  • Uri Nadav
  • Moni Naor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3724)


We investigate issues related to the probe complexity of the And-Or quorum system and its implementation in a dynamic environment. Our contribution is twofold: We first analyze the algorithmic probe complexity of the And-Or quorum system, and present two optimal algorithms. The first is a non-adaptive algorithm with \(O(\sqrt{n}log n)\) probe complexity, which matches a known lower bound. The second is an adaptive algorithm with a probe complexity that is linear in the cardinality of a quorum set (\(O(\sqrt{n})\)), and requires at most O(loglogn) rounds. To the best of our knowledge, all other adaptive algorithms with same parameters (load and probe complexity) require \(\theta(\sqrt{n})\) rounds.

Our second contribution is presenting the ‘dynamic And-Or’ quorum system – an adaptation of the above quorum system to a dynamic environment, where processors join and leave the network. It is based on a dynamic overlay network that emulates the De-Bruijn network and maintains the good properties of the quorum system(e.g.,load and availability). The algorithms suggested for the maintenance of these dynamic data structures are strongly coupled with the dynamic overlay network. This fact enables the use of gossip protocols which saves in message complexity and keeps the protocols simple and local. All these qualities make the ‘dynamic And-Or’ an excellent candidate for an implementation of dynamic quorums.


Failure Probability Binary Tree Adaptive Algorithm Overlay Network Distribute Hash Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, I., Awerbuch, B., Azar, Y., Bartal, Y., Malkhi, D., Pavlov, E.: A generic scheme for building overlay networks in adversarial scenarios. In: IPDPS (2003)Google Scholar
  2. 2.
    Abraham, I., Malkhi, D.: Probabilistic quorums for dynamic systmes. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 60–74. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bazzi, R.: Planar quorums. In: Babaoğlu, Ö., Marzullo, K. (eds.) WDAG 1996. LNCS, vol. 1151. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Fraigniaud, P., Gauron, P.: An overview of the content-addressable network d2b. In: PODC (2003)Google Scholar
  5. 5.
    Hassin, Y., Peleg, D.: Average probe complexity in quorum systems. In: PODC (2001)Google Scholar
  6. 6.
    Kaashoek, M.F., Karger, D.R.: Koorde: A simple degree-optimal distributed hash table. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Karger, D., Ruhl, M.: Simple efficient load balancing algorithms for peer-to-peer systems. In: SPAA (2004)Google Scholar
  8. 8.
    Liggett, T., Schonmann, R., Stacey, A.: Domination by product measures. The Annals of Probability 25(1) (1997)Google Scholar
  9. 9.
    Lynch, N., Malkhi, D., Ratajczak, D.: Atomic data access in distributed hash tables. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, p. 295. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and dynamic emulation of the butterfly. In: PODC (2002)Google Scholar
  11. 11.
    Malkhi, D., Reiter, M., Wright, R.: Probabilistic quorum systems. In: PODC (1997)Google Scholar
  12. 12.
    Manku, G.S.: Balanced binary trees for ID management and load balance in distributed hash tables. In: PODC (2004)Google Scholar
  13. 13.
    Nadav, U., Naor, M.: Fault-tolerant storage in a dynamic environment. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 390–404. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Naor, M., Wieder, U.: Novel architectures for p2p applications: the continuous-discrete approach. In: SPAA (2003)Google Scholar
  15. 15.
    Naor, M., Wieder, U.: Scalable and dynamic quorum systems. In: PODC (2003)Google Scholar
  16. 16.
    Naor, M., Wool, A.: The load, capacity, and availability of quorum systems. SIAM Journal on Computing 27(2) (1998)Google Scholar
  17. 17.
    Peleg, D., Wool, A.: The availability of quorum systems. Inf. Comput. 123(2) (1995)Google Scholar
  18. 18.
    Peleg, D., Wool, A.: How to be an efficient snoop, or the probe complexity of quorum systems. SIAM Journal on Discrete Mathematics 15(3) (2002)Google Scholar
  19. 19.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content addressable network. In: Proc. ACM SIGCOMM (2001)Google Scholar
  20. 20.
    Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable Peer-To-Peer lookup service for internet applications. In: ACM SIGCOMM Conference (2001)Google Scholar
  21. 21.
    Zhao, B.Y., Kubiatowicz, J.: Tapestry: An infrastructure for fault-tolerant wide-area location and routing. Technical Report UCB CSD 01-1141, University of California at Berkeley (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Uri Nadav
    • 1
  • Moni Naor
    • 2
  1. 1.Dept. of Computer ScienceTel-Aviv University 
  2. 2.Dept. of Computer Science and Applied MathematicsThe Weizmann Institute 

Personalised recommendations