Deciding Stability in Packet-Switched FIFO Networks Under the Adversarial Queuing Model in Polynomial Time,

  • Maria J. Blesa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3724)

Abstract

In spite of the importance of the fifo protocol and the research efforts invested in obtaining results for it, deciding whether a given (packet-switched) network is stable under fifo has remained an open question for several years. In this work, we address the general case of this problem and try to characterize the property of stability under fifo in terms of network topologies. Such a characterization provides us with the family of network topologies that, under the fifo protocol, can be made unstable by some adversarial traffic pattern. We show that the property of stability under fifo is decidable in polynomial time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Àlvarez, C., Blesa, M., Díaz, J., Fernández, A., Serna, M.: The complexity of deciding stability under FFS in the adversarial model. Information Processing Letters 90(5), 261–266 (2004)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Àlvarez, C., Blesa, M., Díaz, J., Fernández, A., Serna, M.: Adversarial models for priority-based networks. Networks 45(1), 23–35 (2005)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Àlvarez, C., Blesa, M., Serna, M.: A characterization of universal stability in the adversarial queueing model. SIAM Journal on Computing 34(1), 41–66 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Andrews, M., Awerbuch, B., Fernández, A., Kleinberg, J., Leighton, T., Liu, Z.: Universal stability results for greedy contention–resolution protocols. Journal of the ACM 48(1), 39–69 (2001)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bhattacharjee, R., Goel, A., Lotker, Z.: Instability of FIFO at arbitrarily low rates in the adversarial queueing model. SIAM Journal on Computing 34(2), 318–332 (2004)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Blesa, M.J.: Deciding Stability under FIFO in the Adversarial Queuing model in polynomial time. Research Report LSI-05-3-R, Dept. Llenguatges i Sistemes Informátics, UPC (2005), www.lsi.upc.edu/dept/techreps/techreps.html
  7. 7.
    Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., Williamson, D.: Adversarial queueing theory. Journal of the ACM 48(1), 13–38 (2001)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Díaz, J., Koukopoulos, D., Nikoletseas, S., Serna, M., Spirakis, P., Thilikós, D.: Stability and non-Stability of the FIFO Protocol. In: 13th annual ACM Symposium on Parallel Algorithms and Architectures (SPAA 2001), pp. 48–52 (2001)Google Scholar
  9. 9.
    Echagüe, J., Cholvi, V., Fernández, A.: Universal stability results for low rate adversaries in packet switched networks. IEEE Communication Letters 7(12), 578–580 (2003)CrossRefGoogle Scholar
  10. 10.
    Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theoretical Computer Science 10(4), 111–121 (1980)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Goel, A.: Stability of networks and protocols in the adversarial queueing model for packet routing. Networks 37(4), 219–224 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hamdi, M.: LCFS queuing for real-time audio-visual services in packet networks. In: IEEE International Workshop on Audio-Visual Services over Packet Networks (AVSPN 1997) (1997)Google Scholar
  13. 13.
    Hamdi, M., Noro, R., Hubaux, J.-P.: Fresh Packet First scheduling for voice traffic in congested networks. Technical Report SSC034, Computer Science Department, Swiss Federal Institute of Technology, EPFL (1997)Google Scholar
  14. 14.
    Hamdi, M.: Fresh Packet First scheduling for interactive services in the Internet. In: 4th International Conference on Information Systems Analysis and Synthesis (ISAS 1998) (1998)Google Scholar
  15. 15.
    Koukopoulos, D., Mavronicolas, M., Spirakis, P.: FIFO is unstable at arbitrarily low rates (even in planar networks). Electronic Colloquium on Computational Complexity 10(16) (2003)Google Scholar
  16. 16.
    Koukopoulos, D., Nikoletseas, S., Spirakis, P.: The range of stability for heterogeneous and FIFO queueing networks. Electronic Colloquium on Computational Complexity,TR01-099 (2001)Google Scholar
  17. 17.
    Koukopoulos, D., Nikoletseas, S., Spirakis, P.: Stability behavior of FIFO protocol in the adversarial queueing model. In: Manolopoulos, Y., Evripidou, S., Kakas, A.C. (eds.) PCI 2001. LNCS, vol. 2563, pp. 464–479. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Koukopoulos, D., Nikoletseas, S., Spirakis, P.: Stability issues in heterogeneous and FIFO networks under the adversarial queueing model. In: Monien, B., Prasanna, V.K., Vajapeyam, S. (eds.) HiPC 2001. LNCS, vol. 2228, pp. 3–14. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Lotker, Z., Patt-Shamir, B., Rosén, A.: New stability results for adversarial queuing. SIAM Journal on Computing 33(2), 286–303 (2004)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM Journal on Computing 1(2), 146–160 (1972)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Maria J. Blesa
    • 1
  1. 1.ALBCOM Research Group, Dept. Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations