Advertisement

Asymptotically Optimal Solutions for Small World Graphs

  • Michele Flammini
  • Luca Moscardelli
  • Alfredo Navarra
  • Stephane Perennes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3724)

Abstract

We consider the problem of determining constructions with an asymptotically optimal oblivious diameter in small world graphs under the Kleinberg’s model. In particular, we give the first general lower bound holding for any monotone distance distribution, that is induced by a monotone generating function. Namely, we prove that the expected oblivious diameter is Ω (log 2 n) even on a path of n nodes. We then focus on deterministic constructions and after showing that the problem of minimizing the oblivious diameter is generally intractable, we give asymptotically optimal solutions, that is with a logarithmic oblivious diameter, for paths, trees and Cartesian products of graphs, including d-dimensional grids for any fixed value of d.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamic, L.A.: The Small World Web. In: Abiteboul, S., Vercoustre, A.-M. (eds.) ECDL 1999. LNCS, vol. 1696, pp. 443–452. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Aspnes, J., Diamadi, Z., Shah, G.: Fault-tolerant routing in peer-to-peer systems. In: Proc. of the 21st annual symposium on Principles of distributed computing (PODC), pp. 223–232. ACM Press, New York (2002)CrossRefGoogle Scholar
  3. 3.
    Barriere, L., Fraigniaud, P., Kranakis, E., Krizanc, D.: Efficient routing in networks with long range contacts. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 270–284. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Fraigniaud, P.: A new perspective on the small-world phenomenon: Greedy routing in tree-decomposed graphs. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Fraigniaud, P., Gavoille, C., Paul, C.: Eclecticism shrinks even small worlds. In: Proc. of the 23rd annual ACM symposium on Principles of distributed computing (PODC), pp. 169–178. ACM Press, New York (2004)Google Scholar
  6. 6.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., New York (1979)zbMATHGoogle Scholar
  7. 7.
    Kleinberg, J.: Small-world phenomena and the dynamics of information. In: Proc. of the 14th Advances in Neural Information Processing Systems, NIPS (2001)Google Scholar
  8. 8.
    Kleinberg, J.: The Small-World Phenomenon and Decentralized Search. SIAM News 37(3) (2004)Google Scholar
  9. 9.
    Kleinberg, J.M.: The small-world phenomenon: an algorithm perspective. In: Proc. of the 32nd ACM Symposium on Theory of Computing (STOC), pp. 163–170 (2000)Google Scholar
  10. 10.
    Martel, C., Nguyen, V.: Analyzing Kleinberg’s (and other) small-world models. In: Proc. of the 23rd Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), pp. 179–188 (2004)Google Scholar
  11. 11.
    Martel, C., Nguyen, V.: Analyzing and characterizing small-world graphs. In: Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 311–320 (2005)Google Scholar
  12. 12.
    Milgram, S.: The small world problem. Psychology Today 2, 60–67 (1967)Google Scholar
  13. 13.
    Walsh, T.: Search in a small world. In: Proc. of the 16th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1172–1177 (1999)Google Scholar
  14. 14.
    Wang, X.F., Chen, G.: Complex networks: small-world, scale-free, and beyond. IEEE Circuits and Systems Magazine 3(1), 6–20 (2003)CrossRefGoogle Scholar
  15. 15.
    Watts, D.J., Strogatz, S.H.: Networks, Dynamics and Small-World Phenomenon. American Journal of Sociology 105(2), 493–527 (1999)CrossRefGoogle Scholar
  16. 16.
    Zhang, H., Goel, A., Govindan, R.: Using the small-world model to improve freenet performance. SIGCOMM Computer Communication Review 32(1), 79–79 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michele Flammini
    • 1
  • Luca Moscardelli
    • 1
  • Alfredo Navarra
    • 1
  • Stephane Perennes
    • 2
  1. 1.Department of Computer ScienceUniversity of L’AquilaItaly
  2. 2.MASCOTTE projectI3S-CNRS/INRIA/Univ. NiceSophia AntipolisFrance

Personalised recommendations