On the Price of Anarchy and Stability of Correlated Equilibria of Linear Congestion Games,,

  • George Christodoulou
  • Elias Koutsoupias
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)

Abstract

We consider the price of stability for Nash and correlated equilibria of linear congestion games. The price of stability is the optimistic price of anarchy, the ratio of the cost of the best Nash or correlated equilibrium over the social optimum. We show that for the sum social cost, which corresponds to the average cost of the players, every linear congestion game has Nash and correlated price of stability at most 1.6. We also give an almost matching lower bound of \(1+\sqrt{3}/3=1.577\).

We also consider the price of anarchy of correlated equilibria. We extend existing results about Nash equilibria to correlated equilibria and show that for the sum social cost, the price of anarchy is exactly 2.5, the same for pure and mixed Nash and for correlated equilibria. The same bound holds for symmetric games as well. We also extend the results about Nash equilibria to correlated equilibria for weighted congestion games and we show that when the social cost is the total latency, the price of anarchy is \((3+\sqrt{5})/2=2.618\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumann, R.: Subjectivity and correlation in randomized games. Journal of Mathematical Economics 1, 67–96 (1974)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Awerbuch, B., Azar, Y., Epstein, A.: The Price of Routing Unsplittable Flow. In: 37th Annual ACM STOC, pp. 57–66 (2005)Google Scholar
  3. 3.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The Price of Stability for Network Design with Fair Cost Allocation. In: 45th Annual IEEE FOCS, pp. 59–73 (2004)Google Scholar
  4. 4.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: 37th Annual ACM STOC, pp. 67–73 (2005)Google Scholar
  5. 5.
    Correa, J.R., Schulz, A.S., Moses, N.S.: Computational Complexity, Fairness, and the Price of Anarchy of the Maximum Latency Problem. In: Bienstock, D., Nemhauser, G.L. (eds.) IPCO 2004. LNCS, vol. 3064, pp. 59–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Czumaj, A., Krysta, P., Vöcking, B.: Selfish traffic allocation for server farms. In: Proceedings on 34th Annual ACM STOC, pp. 287–296 (2002)Google Scholar
  7. 7.
    Czumaj, A., Vöcking, B.: Tight Bounds for Worst-case Equilibria. In: Proceedings of the 13th Annual ACM-SIAM SODA, January 2002, pp. 413–420 (2002)Google Scholar
  8. 8.
    Fabrikant, A., Papadimitriou, C., Tulwar, K.: On the complexity of pure equilibria. In: Proceedings of the 36th Annual ACM STOC, June 2004, pp. 604–612 (2004)Google Scholar
  9. 9.
    Fotakis, D., Kontogiannis, S.C., Spirakis, P.G.: Selfish Unsplittable Flows. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 593–605. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: The Price of Anarchy for Polynomial Social Cost. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 574–585. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: Computing Nash equilibria for scheduling on restricted parallel links. In: Proceedings of the 36th Annual ACM STOC, pp. 613–622 (2004)Google Scholar
  12. 12.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: Nash Equilibria in Discrete Routing Games with Convex Latency Functions. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 645–657. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate Equilibria and Ball Fusion. In: Proceedings of the 9th SIROCCO (2002)Google Scholar
  14. 14.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A New Model for Selfish Routing. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 547–558. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Mavronicolas, M., Spirakis, P.G.: The price of selfish routing. In: Proceedings on 33rd Annual ACM STOC, pp. 510–519 (2001)Google Scholar
  17. 17.
    Milchtaich, I.: Congestion Games with Player-Specific Payoff Functions. Games and Economic Behavior 13, 111–124 (1996)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Monderer, D., Shapley, L.S.: Potential Games. Games and and Economic Behavior 14, 124–143 (1996)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)MATHGoogle Scholar
  20. 20.
    Papadimitriou, C.H.: Algorithms, games, and the Internet. In: Proceedings of the 33rd Annual ACM STOC, pp. 749–753 (2001)Google Scholar
  21. 21.
    Papadimitriou, C.H.: Computing Correlated Equilibria in Multiplayer Games. In: 37th Annual ACM STOC, pp. 49–56 (2005)Google Scholar
  22. 22.
    Papadimitriou, C.H., Roughgarden, T.: Computing Equilibria in Multi-Player Games. In: Proceedings of the 16th Annual ACM-SIAM SODA, pp. 82–91 (2005)Google Scholar
  23. 23.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2, 65–67 (1973)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Roughgarden, T.: The price of anarchy is independent of the network topology. Journal of Computer and System Sciences 67(2), 341–364 (2003)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Roughgarden, T.: The maximum latency of selfish routing. In: Proceedings of the 15th Annual ACM-SIAM SODA, pp. 980–981 (2004)Google Scholar
  26. 26.
    Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49(2), 236–259 (2002)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Roughgarden, T., Tardos, E.: Bounding the inefficiency of equilibria in nonatomic congestion games. Games and Economic Behavior 47(2), 389–403 (2004)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Suri, S., Tóth, C.D., Zhou, Y.: Selfish load balancing and atomic congestion games. In: Proceedings of the 16th annual ACM SPAA, pp. 188–195 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • George Christodoulou
    • 1
  • Elias Koutsoupias
    • 1
  1. 1.Department of Informatics and TelecommunicationsNational and Kapodistrian University of Athens 

Personalised recommendations