Approximating Integer Quadratic Programs and MAXCUT in Subdense Graphs

  • Andreas Björklund
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)

Abstract

Let A be a real symmetric n× n-matrix with eigenvalues λ1,⋯,λn ordered after decreasing absolute value, and b an n× 1-vector. We present an algorithm finding approximate solutions to min x*(Ax + b) and max x*(Ax + b) over x∈ {–1,1}n, with an absolute error of at most \((c_{1}|{\rm \lambda_{1}}|+|{\rm \lambda}_{\lceil c_{2} {\rm log}n\rceil}|)2n+O((\alpha n+\beta)\sqrt{n {\rm log}n})\), where α and β are the largest absolute values of the entries in A and b, respectively, for any positive constants c1 and c2, in time polynomial in n.

We demonstrate that the algorithm yields a PTAS for MAXCUT in regular graphs on n vertices of degree d of \(\omega(\sqrt{n{\rm log}n})\), as long as they contain O(d4log n) 4-cycles. The strongest previous result showed that Ω(n/log n) average degree graphs admit a PTAS.

We also show that smooth n-variate polynomial integer programs of constant degree k, always can be approximated in polynomial time leaving an absolute error of o(nk), answering in the affirmative a suspicion of Arora, Karger, and Karpinski in STOC 1995.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., de la Vega, W.F., Kannan, R., Karpinski, M.: Random Sampling and Approximation of MAX-CSP Problems. In: Proc. 34th STOC, pp. 534–543. ACM, New York (2002); The full paper can be found in Technical Report TR01-100, ECCC (2001)Google Scholar
  2. 2.
    Arora, S., Berger, E., Hazan, E., Kindler, G., Safra, M.: On Non-Approximability for Quadratic Programs. Technical Report TR05-58, ECCC, 2005. To appear at Proc. 46th FOCS, IEEE (2005)Google Scholar
  3. 3.
    Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for dense instances of NP-hard problems. In: Proc. 27th STOC, pp. 284–293. ACM, New York (1995)Google Scholar
  4. 4.
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. In: Proc. 33rd FOCS, pp. 14–23. IEEE, Los Alamitos (1992)Google Scholar
  5. 5.
    Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1996); ISBN 0-521-45897-8Google Scholar
  6. 6.
    de la Vega, W.F.: MAX-CUT has a Randomized Approximation Scheme in Dense Graphs. Random Structures and Algorithms 8(3), 187–198 (1996)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    de la Vega, W.F., Karpinski, M.: Polynomial time approximation of dense weighted instances of MAX-CUT. Random Structures and Algorithms 16(4), 314–332 (2000)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    de la Vega, W.F., Karpinski, M.: A Polynomial Time Approximation Scheme for Subdense MAX-CUT. Technical Report TR02-044, ECCC (2002)Google Scholar
  9. 9.
    Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Goldreich, O., Goldwasser, S., Ron, D.: Property Testing and its Connection to Learning and Approximation. In: Proc. 37th FOCS, vol. 45, pp. 339–348. IEEE, Los Alamitos (1996); The full paper can be found in J. ACM 45, 653–750 (1998)Google Scholar
  11. 11.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins Universal Press, Baltimore (1996); ISBN 0-8018-5414-8MATHGoogle Scholar
  12. 12.
    Karloff, H.: Linear Programming. Birkhäuser, Boston (1991); ISBN 3-7643-3561-0MATHCrossRefGoogle Scholar
  13. 13.
    Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. System Sci. 43, 425–440 (1991)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Raghavan, P.: Probabilistic construction of deterministic algorithms: Approximate packing integer programs. J. Comput. System Sci. 37(2), 130–143 (1988)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Raghavan, P., Thompson, C.: Randomized Rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica 7, 365–374 (1987)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andreas Björklund
    • 1
  1. 1.Department of Computer ScienceLund UniversityLundSweden

Personalised recommendations