Computing Common Intervals of K Permutations, with Applications to Modular Decomposition of Graphs

  • Anne Bergeron
  • Cedric Chauve
  • Fabien de Montgolfier
  • Mathieu Raffinot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)


We introduce a new way to compute common intervals of K permutations based on a very simple and general notion of generators of common intervals. This formalism leads to simple and efficient algorithms to compute the set of all common intervals of K permutations, that can contain a quadratic number of intervals, as well as a linear space basis of this set of common intervals. Finally, we show how our results on permutations can be used for computing the modular decomposition of graphs in linear time.


Linear Time Closed Family Strong Module Adjacency List Quadratic Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bérard, S., Bergeron, A., Chauve, C.: Conserved structures in evolution scenarios. In: Lagergren, J. (ed.) RECOMB-WS 2004. LNCS (LNBI), vol. 3388, pp. 1–15. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bergeron, A., Chauve, C., de Montgolfier, F., Raffinot, M.: Computing common intervals of K permutations, with applications to modular decomposition of graphs. LIAFA technical report 2005-006, available at:
  3. 3.
    Booth, S., Lueker, G.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-trees algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bui Xuan, B.M., Habib, M., Paul, C.: From Permutations to Graph Algorithms, LIRMM technical report RR-05021 (2005)Google Scholar
  5. 5.
    Capelle, C., Habib, M.: Graph decompositions and factorizing permutations. In: Fifth Israel Symposium on Theory of Computing and Systems, ISTCS 1997, pp. 132–143. IEEE Computer Society Press, Los Alamitos (1997)CrossRefGoogle Scholar
  6. 6.
    Cournier, A., Habib, M.: A new linear algorithm for modular decomposition. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 68–84. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  7. 7.
    Dahlhaus, E., Gustedt, J., McConnell, R.M.: Efficient and practical algorithms for sequential modular decomposition. J. Algorithms 41(2), 360–387 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Figeac, M., Varré, J.-S.: Sorting by reversals with common intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 26–37. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Habib, M., de Montgolfier, F., Paul, C.: A Simple Linear-Time Modular Decomposition Algorithm for Graphs, Using Order Extension. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 187–198. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Heber, S., Stoye, J.: Finding all common intervals of k permutations. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 207–218. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Landau, G.M., Parida, L., Weimann, O.: Gene Proximity Analysis Across Whole Genomes via PQ Trees. In: 6th Combinatorial Pattern Matching Conference, CPM (2005)Google Scholar
  12. 12.
    McConnell, R.M., de Montgolfier, F.: Algebraic Operations on PQ-trees and Modular Decomposition Trees. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 421–432. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    McConnell, R.M., Spinrad, J.: Linear-time modular decomposition and efficient transitive orientation of comparability graphs. In: Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 536–545. ACM/SIAM (1994)Google Scholar
  14. 14.
    McConnell, R.M., Spinrad, J.: Ordered vertex partitioning. Discrete Mathematics & Theoretical Computer Science 4, 45–60 (2000)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Möhring, R.H., Radermacher, F.J.: Substitution decomposition for discrete structures and connections with combinatorial optimization. Annals of Discrete Mathematics 19, 257–356 (1984)Google Scholar
  16. 16.
    Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two permutations. Algorithmica 26(2), 290–309 (2000)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Anne Bergeron
    • 1
  • Cedric Chauve
    • 1
  • Fabien de Montgolfier
    • 2
  • Mathieu Raffinot
    • 3
  1. 1.Département d’informatiqueUniversité du Québec à MontréalCanada
  2. 2.LIAFAUniversité Denis Diderot – Case 7014ParisFrance
  3. 3.CNRS – Laboratoire Génome et InformatiqueEvryFrance

Personalised recommendations