Shortest Paths in Matrix Multiplication Time

[Extended Abstract]
  • Piotr Sankowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)


In this paper we present an \({\tilde O}(W n^{\omega})\) time algorithm solving single source shortest path problem in graphs with integer weights from the set {–W,...,0,...,W}, where ω < 2.376 is the matrix multiplication exponent. For dense graphs with small edge weights, this result improves upon the algorithm of Goldberg that works in \({\tilde O}(mn^{0.5}{\rm log}W)\) time, and the Bellman-Ford algorithm that works in O(nm) time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellman, R.: On a Routing Problem. Quarterly of Applied Mathematics 16(1), 87–90 (1958)MATHMathSciNetGoogle Scholar
  2. 2.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In: Proceedings of the nineteenth annual ACM conference on Theory of computing, pp. 1–6. ACM Press, New York (1987)CrossRefGoogle Scholar
  3. 3.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1990)MATHGoogle Scholar
  4. 4.
    Gabow, H.N.: Scaling Algorithms for Network Problems. J. Comput. Syst. Sci. 31(2), 148–168 (1985)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gabow, H.N., Tarjan, R.E.: Faster Scaling Algorithms for Network Problems. SIAM J. Comput. 18(5), 1013–1036 (1989)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Goldberg, A.V.: Scaling Algorithms for the Shortest Paths Problem. SIAM J. Comput. 24(3), 494–504 (1995)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ford Jr. L.R.: Network Flow Theory. Paper P-923, The RAND Corperation, Santa Moncia, California (August 1956)Google Scholar
  8. 8.
    Moore, E.F.: The Shortest Path Through a Maze. In: Proceedings of the International Symposium on the Theory of Switching, pp. 285–292. Harvard University Press, Cambridge (1959)Google Scholar
  9. 9.
    Sankowski, P.: Dynamic Transitive Closure via Dynamic Matrix Inverse. In: Proceedings of the 45th annual IEEE Symposium on Foundations of Computer Science, pp. 248–255 (2004)Google Scholar
  10. 10.
    Sankowski, P.: Subquadratic Algorithm for Dynamic Shortest Distances. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 461–470. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM 27, 701–717 (1980)MATHCrossRefGoogle Scholar
  12. 12.
    Shimbel, A.: Structure in Communication Nets. In: Proceedings of the Symposium on Information Networks, pp. 199–203. Polytechnic Press of the Polytechnic Institute of Brooklyn, Brooklyn (1955)Google Scholar
  13. 13.
    Storjohann, A.: High-order lifting and integrality certification. J. Symb. Comput. 36(3-4), 613–648 (2003)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Yuster, R., Zwick, U.: Answering distance queries in directed graphs using fast matrix multiplication. In: The 46th Annual Symposium on Foundations of Computer Science, FOCS 2005 (2005)Google Scholar
  15. 15.
    Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.) EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Piotr Sankowski
    • 1
  1. 1.Institute of InformaticsWarsaw UniversityWarsawPoland

Personalised recommendations