An Approximation Algorithm for the Minimum Latency Set Cover Problem

  • Refael Hassin
  • Asaf Levin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)


The input to the minimum latency set cover problem consists of a set of jobs and a set of tools. Each job j needs a specific subset S j of the tools in order to be processed. It is possible to install a single tool in every time unit. Once the entire subset S j has been installed, job j can be processed instantly. The problem is to determine an order of job installations which minimizes the weighted sum of job completion times. We show that this problem is NP-hard in the strong sense and provide an e-approximation algorithm. Our approximation algorithm uses a framework of approximation algorithms which were developed for the minimum latency problem.


Minimum sum set cover minimum latency approximation algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Archer, A., Levin, A., Williamson, D.P.: Faster approximation algorithm for the minimum latency problem, Cornell OR&IE Technical report 1362 (2003)Google Scholar
  2. 2.
    Balinski, M.L.: On a selection problem. Management Science 17, 230–231 (1970)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, W., Raghavan, P., Sudan, M.: The minimum latency problem. In: Proceeding of the 26th ACM Symposium on the Theory of Computing, pp. 163–171 (1994)Google Scholar
  4. 4.
    Brucker, P.: Scheduling algorithms. Springer, Berlin (2004)MATHGoogle Scholar
  5. 5.
    Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph Problem. Algorithmica 29, 410–421 (2001)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Feige, U., Lovász, L., Tetali, P.: Approximating min sum set cover. Algorithmica 40, 219–234 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Goemans, M.X., Kleinberg, J.: An improved approximation ratio for the minimum latency problem. Mathematical Programming 82, 111–124 (1998)MathSciNetMATHGoogle Scholar
  8. 8.
    Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion time: off-line and on-line approximation algorithms. Mathematics of Operations Research 22, 513–544 (1997)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hochbaum, D.S.: Economically preferred facilities locations with networking effect (2004) (manuscript)Google Scholar
  10. 10.
    Lageweg, B.J., Lenstra, J.K., Lawler, E.L., Rinnooy Kan, A.H.G.: Computer-aided complexity classification of combinatorial problems. Communications of the ACM 25, 817–822 (1982)MATHCrossRefGoogle Scholar
  11. 11.
    Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart & Winston (1976)MATHGoogle Scholar
  12. 12.
    Lawler, E.L.: Sequencing jobs to minimize total weighted completion time subject to precedence constraints. Annals of Discrete Mathematics 2, 75–90 (1978)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lenstra, J.K., Rinnooy Kan, A.H.G.: Complexity of scheduling under precedence constraints. Operations Research 26, 22–35 (1978)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Rhys, J.: Shared fixed cost and network flows. Management Science 17, 200–207 (1970)MATHCrossRefGoogle Scholar
  15. 15.
    Witzgall, D.D., Saunders, R.E.: Electronic mail and the locator’s dilemma. In: Ringeisen, R.D., Roberts, F.S. (eds.) Applications of Discrete Mathematics, pp. 65–84. SIAM, Philadelphia (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Refael Hassin
    • 1
  • Asaf Levin
    • 2
  1. 1.Department of Statistics and Operations ResearchTel-Aviv UniversityTel-AvivIsrael
  2. 2.Department of StatisticsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations