Experimental Study of Geometric t-Spanners

  • Mohammad Farshi
  • Joachim Gudmundsson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)


The construction of t-spanners of a given point set has received a lot of attention, especially from a theoretical perspective. In this paper we perform the first extensive experimental study of the properties of t-spanners. The main aim is to examine the quality of the produced spanners in the plane. We implemented the most common t-spanner algorithms and tested them on a number of different point sets. The experiments are discussed and compared to the theoretical results and in several cases we suggest modifications that are implemented and evaluated. The quality measurements that we consider are the number of edges, the weight, the maximum degree, the diameter and the number of crossings.


  1. 1.
    Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete & Computational Geometry 9(1), 81–100 (1993)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean spanners: short, thin, and lanky. In: Proc. 27th ACM Symposium on Theory of Computing, pp. 489–498 (1995)Google Scholar
  3. 3.
    Bose, P., Gudmundsson, J., Morin, P.: Ordered theta graphs. Computational Geometry: Theory and Applications 28, 11–18 (2004)MATHMathSciNetGoogle Scholar
  4. 4.
    Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM 42, 67–90 (1995)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Clarkson, K.L.: Approximation algorithms for shortest path motion planning. In: Proc. 19th ACM Symposium on Computational Geometry, pp. 56–65 (1987)Google Scholar
  6. 6.
    Czumaj, A., Lingas, A.: Fast approximation schemes for euclidean multi-connectivity problems. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 856–868. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 425–461. Elsevier Science Publishers, Amsterdam (2000)CrossRefGoogle Scholar
  8. 8.
    Farley, A.M., Proskurowski, A., Zappala, D., Windisch, K.J.: Spanners and message distribution in networks. Discrete Applied Mathematics 137(2), 159–171 (2004)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Improved greedy algorithms for constructing sparse geometric spanners. SIAM Journal of Computing 31(5), 1479–1500 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.: Approximate distance oracles for geometric graph. In: Proc. 13th ACM-SIAM Symposium on Discrete Algorithms (2002)Google Scholar
  11. 11.
    Keil, J.M.: Approximating the complete Euclidean graph. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988)Google Scholar
  12. 12.
    Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete Euclidean graph. Discrete and Computational Geometry 7, 13–28 (1992)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Li, X.-Y.: Applications of computational geomety in wireless ad hoc networks. In: Cheng, X.-Z., Huang, X., Du, D.-Z. (eds.) Ad Hoc Wireless Networking. Kluwer, Dordrecht (2003)Google Scholar
  14. 14.
    Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (2000)Google Scholar
  15. 15.
    Navarro, G., Paredes, R.: Practical construction of metric t-spanners. In: Proc. 5th Workshop on Algorithm Engineering and Experiments, pp. 69–81. SIAM Press, Philadelphia (2003)Google Scholar
  16. 16.
    Navarro, G., Paredes, R., Chávez, E.: t-spanners as a data structure for metric space searching. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 298–309. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Purchase, H.C.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. 18.
    Rao, S., Smith, W.D.: Approximating geometrical graphs via spanners and banyans. In: Proc. 30th ACM Symposium on the Theory of Computing, pp. 540–550. ACM, New York (1998)Google Scholar
  19. 19.
    Ruppert, J., Seidel, R.: Approximating the d-dimensional complete Euclidean graph. In: Proc. 3rd Canadian Conference on Computational Geometry, pp. 207–210 (1991)Google Scholar
  20. 20.
    Sigurd, M., Zachariasen, M.: Construction of minimum-weight spanners. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 797–808. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mohammad Farshi
    • 1
  • Joachim Gudmundsson
    • 2
  1. 1.Department of Mathematics and Computing ScienceTU EindhovenEindhovenThe Netherlands
  2. 2.NICTASydneyAustralia

Personalised recommendations