Efficient c-Oriented Range Searching with DOP-Trees

  • Mark de Berg
  • Herman Haverkort
  • Micha Streppel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)

Abstract

A c-dop is a c-oriented convex polytope, that is, a convex polytope whose edges have orientations that come from a fixed set of c orientations. In this paper we study dop-trees—bounding-volume hierarchies that use c-dops as bounding volumes—in the plane. We prove that for any set S of n disjoint c-dops in the plane, one can construct a dop-tree such that a range query with a c-dop as query range can be answered in O(n1/2 + ε + k) time, where k is the number of reported answers. This is optimal up to the factor O(nε). If the c-dops in S may intersect, the query time becomes O(n\(^{\rm 1-1/{\it c}}\)+k), which is optimal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., de Berg, M., Gudmundsson, J., Hammar, M., Haverkort, H.J.: Box-trees and R-trees with near-optimal query time. Discrete Comput. Geom. 28, 291–312 (2002)MATHMathSciNetGoogle Scholar
  2. 2.
    Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J., Pollack, R. (eds.) Advances in Discrete and Computational Geometry, Contemporary Mathematics, vol. 223, pp. 1–56. American Mathematical Society, Providence (1998)Google Scholar
  3. 3.
    Gottschalk, S., Lin, M.C., Manocha, D.: OBB-Tree: a hierarchical structure for rapid interference detection. In: Proc. Computer Graphics (SIGGRAPH), pp. 171–180 (1996)Google Scholar
  4. 4.
    Haverkort, H.J.: Results on Geometric Networks and Data Structures. Ph.D. Thesis, Utrecht University (2004)Google Scholar
  5. 5.
    Haverkort, H.J., de Berg, M., Gudmundsson, J.: Box-Trees for Collision Checking in Industrial Installations. In: Proc. 18th ACM Symp. on Computational Geometry, pp. 53–62 (2002)Google Scholar
  6. 6.
    Jagadish, H.V.: Spatial Search with Polyhedra. In: Proc. Int. Conf. Data Engineering (ICDE), pp. 311–319 (1990)Google Scholar
  7. 7.
    Klosowski, J.T., Held, M., Mitchell, J.S.B., Sowizral, H., Zikan, K.: Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs. IEEE Transactions on Visualization and Computer Graphics 4(1), 21–36 (1998)CrossRefGoogle Scholar
  8. 8.
    Manolopoulos, Y., Theodoridis, Y., Tsotras, V.: Advanced Database Indexing. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  9. 9.
    Matoušek, J.: Efficient partition trees. Discrete Comput. Geom. 8, 315–334 (1992)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Nievergelt, J., Widmayer, P.: Spatial data structures: concepts and design choices. In: van Kreveld, M., Nievergelt, J., Roos, T., Widmayer, P. (eds.) CISM School 1996. LNCS, vol. 1340, pp. 153–197. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Sitzmann, I., Stuckey, P.J.: The O-TreeA Constraint-Based Index Structure, technical report, University of Melbourne (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mark de Berg
    • 1
  • Herman Haverkort
    • 1
  • Micha Streppel
    • 1
  1. 1.Department of Computer ScienceTU EindhovenEindhovenThe Netherlands

Personalised recommendations