Efficient c-Oriented Range Searching with DOP-Trees

  • Mark de Berg
  • Herman Haverkort
  • Micha Streppel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)


A c-dop is a c-oriented convex polytope, that is, a convex polytope whose edges have orientations that come from a fixed set of c orientations. In this paper we study dop-trees—bounding-volume hierarchies that use c-dops as bounding volumes—in the plane. We prove that for any set S of n disjoint c-dops in the plane, one can construct a dop-tree such that a range query with a c-dop as query range can be answered in O(n1/2 + ε + k) time, where k is the number of reported answers. This is optimal up to the factor O(nε). If the c-dops in S may intersect, the query time becomes O(n\(^{\rm 1-1/{\it c}}\)+k), which is optimal.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., de Berg, M., Gudmundsson, J., Hammar, M., Haverkort, H.J.: Box-trees and R-trees with near-optimal query time. Discrete Comput. Geom. 28, 291–312 (2002)MATHMathSciNetGoogle Scholar
  2. 2.
    Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J., Pollack, R. (eds.) Advances in Discrete and Computational Geometry, Contemporary Mathematics, vol. 223, pp. 1–56. American Mathematical Society, Providence (1998)Google Scholar
  3. 3.
    Gottschalk, S., Lin, M.C., Manocha, D.: OBB-Tree: a hierarchical structure for rapid interference detection. In: Proc. Computer Graphics (SIGGRAPH), pp. 171–180 (1996)Google Scholar
  4. 4.
    Haverkort, H.J.: Results on Geometric Networks and Data Structures. Ph.D. Thesis, Utrecht University (2004)Google Scholar
  5. 5.
    Haverkort, H.J., de Berg, M., Gudmundsson, J.: Box-Trees for Collision Checking in Industrial Installations. In: Proc. 18th ACM Symp. on Computational Geometry, pp. 53–62 (2002)Google Scholar
  6. 6.
    Jagadish, H.V.: Spatial Search with Polyhedra. In: Proc. Int. Conf. Data Engineering (ICDE), pp. 311–319 (1990)Google Scholar
  7. 7.
    Klosowski, J.T., Held, M., Mitchell, J.S.B., Sowizral, H., Zikan, K.: Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs. IEEE Transactions on Visualization and Computer Graphics 4(1), 21–36 (1998)CrossRefGoogle Scholar
  8. 8.
    Manolopoulos, Y., Theodoridis, Y., Tsotras, V.: Advanced Database Indexing. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  9. 9.
    Matoušek, J.: Efficient partition trees. Discrete Comput. Geom. 8, 315–334 (1992)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Nievergelt, J., Widmayer, P.: Spatial data structures: concepts and design choices. In: van Kreveld, M., Nievergelt, J., Roos, T., Widmayer, P. (eds.) CISM School 1996. LNCS, vol. 1340, pp. 153–197. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Sitzmann, I., Stuckey, P.J.: The O-TreeA Constraint-Based Index Structure, technical report, University of Melbourne (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mark de Berg
    • 1
  • Herman Haverkort
    • 1
  • Micha Streppel
    • 1
  1. 1.Department of Computer ScienceTU EindhovenEindhovenThe Netherlands

Personalised recommendations