Approximating the 2-Interval Pattern Problem

  • Maxime Crochemore
  • Danny Hermelin
  • Gad M. Landau
  • Stéphane Vialette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)

Abstract

We address the problem of approximating the 2-Interval Pattern problem over its various models and restrictions. This problem, which is motivated by RNA secondary structure prediction, asks to find a maximum cardinality subset of a 2-interval set with respect to some prespecified model. For each such model, we give varying approximation quality depending on the different possible restrictions imposed on the input 2-interval set.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Applied Mathematics 104, 45–62 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bar-Yehuda, R., Halldorsson, M.M., Naor, J., Shachnai, H., Shapira, I.: Scheduling spit intervals. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pp. 732–741 (2002)Google Scholar
  3. 3.
    Blin, G., Fertin, G., Vialette, S.: New results for the 2-interval pattern problem. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 311–322. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Dagan, I., Golumbic, M.C., Pinter, R.Y.: Trapezoid graphs and their coloring. Discrete Applied Mathematics 21, 35–46 (1988)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Felsner, S., Müller, R., Wernisch, L.: Trapezoid graphs and generalizations: Geometry and algorithms. Discrete Applied Mathematics 74, 13–32 (1997)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques and maximum independent set of a chordal graph. SIAM Journal on Computing 1, 180–187 (1972)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Academic Press, New York (1980)MATHGoogle Scholar
  8. 8.
    Ieong, S., Kao, M.Y., Lam, T.W., Sung, W.K., Yiu, S.M.: Predicting RNA secondary structures with arbitrary pseudoknots by maximizing the number of stacking pairs. In: Proceedings of the 2nd Symposium on Bioinformatics and Bioengineering (BIBE 2002), pp. 183–190 (2002)Google Scholar
  9. 9.
    Lyngsø, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in energy based models. Journal of Computational Biology 7, 409–428 (2000)CrossRefGoogle Scholar
  10. 10.
    McKee, T.A., McMorris, F.R.: Topics in intersection graph theory. SIAM monographs on discrete mathematics and applications (1999)Google Scholar
  11. 11.
    Vialette, S.: On the computational complexity of 2-interval pattern matching problems. Theoretical Computer Science 312, 335–379 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Maxime Crochemore
    • 1
    • 2
  • Danny Hermelin
    • 3
  • Gad M. Landau
    • 3
    • 4
  • Stéphane Vialette
    • 5
  1. 1.Institut Gaspard-MongeUniversité de Marne-la-ValléeFrance
  2. 2.Department of Computer ScienceKing’s CollageLondonUK
  3. 3.Department of Computer ScienceUniversity of HaifaIsrael
  4. 4.Department of Computer and Information SciencePolytechnic UniversityUSA
  5. 5.Laboratoire de Recherche en Informatique (LRI)Université Paris-SudFrance

Personalised recommendations