I/O-Efficient Construction of Constrained Delaunay Triangulations

  • Pankaj K. Agarwal
  • Lars Arge
  • Ke Yi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)


In this paper, we designed and implemented an I/O-efficient algorithm for constructing constrained Delaunay triangulations. If the number of constraining segments is smaller than the memory size, our algorithm runs in expected \(O(\frac{N}{B}{\rm log}_{M/B}\frac{N}{B})\) I/Os for triangulating N points in the plane, where M is the memory size and B is the disk block size. If there are more constraining segments, the theoretical bound does not hold, but in practice the performance of our algorithm degrades gracefully. Through an extensive set of experiments with both synthetic and real data, we show that our algorithm is significantly faster than existing implementations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    North Carolina Flood Mapping Program, http://www.ncfloodmaps.com
  2. 2.
    Aggarwal, A., Vitter, J.S.: The Input/Output complexity of sorting and related problems. Communications of the ACM 31(9), 1116–1127 (1988)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Amenta, N., Choi, S., Rote, G.: Incremental constructions con brio. In: Proc. 19th Annu. ACM Sympos. Comput. Geom., pp. 221–219 (2003)Google Scholar
  4. 4.
    Arge, L., Procopiuc, O., Vitter, J.S.: Implementing I/O-efficient data structures using TPIE. In: Proc. European Symposium on Algorithms, pp. 88–100 (2002)Google Scholar
  5. 5.
    Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 201–290. Elsevier Science Publishers B.V, North-Holland (2000)CrossRefGoogle Scholar
  6. 6.
    Blelloch, G.E., Miller, G.L., Hardwick, J.C., Talmor, D.: Design and implementation of a practical parallel Delaunay algorithm. Algorithmica 24(3), 243–269 (1999)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    The CGAL Reference Manual, Release 2.0 (1999)Google Scholar
  8. 8.
    Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4, 97–108 (1989)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387–421 (1989)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Crauser, A., Ferragina, P., Mehlhorn, K., Meyer, U., Ramos, E.: Randomized external-memory algorithms for some geometric problems. International Journal of Computational Geometry & Applications 11(3), 305–337 (2001)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Goodrich, M.T., Tsay, J.-J., Vengroff, D.E., Vitter, J.S.: External-memory computational geometry. In: Proc. IEEE Symposium on Foundations of Computer Science, pp. 714–723 (1993)Google Scholar
  12. 12.
    Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica 7, 381–413 (1992)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kumar, P., Ramos, E.A.: I/O-efficient construction of voronoi diagrams. Technical report (2002)Google Scholar
  14. 14.
    Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (2000)Google Scholar
  15. 15.
    Seidel, R.: Constrained Delaunay triangulations and Voronoi diagrams with obstacles. Computer Science Division, UC Berkeley (June 1989)Google Scholar
  16. 16.
    Shewchuk, J.R.: Triangle: engineering a 2d quality mesh generator and Delaunay triangulator. In: First Workshop on Applied Computational Geometry. Association for Computing Machinery (May 1996)Google Scholar
  17. 17.
    TIGER/LineTM Files, 1997 Technical Documentation, Washington, DC (September 1998), http://www.census.gov/geo/tiger/TIGER97D.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Pankaj K. Agarwal
    • 1
  • Lars Arge
    • 1
    • 2
  • Ke Yi
    • 1
  1. 1.Department of Computer ScienceDuke UniversityDurhamUSA
  2. 2.Department of Computer ScienceUniversity of AarhusAarhusDenmark

Personalised recommendations