Advertisement

5-Regular Graphs are 3-Colorable with Positive Probability

  • J. Díaz
  • G. Grammatikopoulos
  • A. C. Kaporis
  • L. M. Kirousis
  • X. Pérez
  • D. G. Sotiropoulos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)

Abstract

We show that uniformly random 5-regular graphs of n vertices are 3-colorable with probability that is positive independently of n.

Keywords

Random Graph Positive Probability Chromatic Number Matching Variable Random Regular Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achlioptas, D., Moore, C.: The asymptotic order of the random k-SAT threshold. In: Proc. 43th Annual Symp. on Foundations of Computer Science (FOCS), pp. 126–127 (2002)Google Scholar
  2. 2.
    Achlioptas, D., Moore, C.: Almost all graphs with degree 4 are 3-colorable. Journal of Computer and Systems Sciences 67(2), 441–471 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Achlioptas, D., Moore, C.: The chromatic number of random regular graphs. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 219–228. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Achlioptas, D., Naor, A.: The two possible values of the chromatic number of a random graph. In: 36th Symposium on the Theory of Computing (STOC), pp. 587–593 (2004)Google Scholar
  5. 5.
    Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. European Journal of Combinatorics 1, 311–316 (1980)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Bollobás, B.: Random Graphs. Academic Press, New York (1985)zbMATHGoogle Scholar
  7. 7.
    Byrd, R.H., Lu, P., Nocedal, J.: A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific and Statistical Computing 16(5), 1190–1208 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. John Wiley, Chichester (2000)zbMATHGoogle Scholar
  9. 9.
    Krza̧kała, F., Pagnani, A., Weigt, M.: Threshold values, stability analysis and high-q asymptotics for the coloring problem on random graphs. Phys. Rev. E 70, 046705 (2004)Google Scholar
  10. 10.
    Łuczak, T.: The chromatic number of random graphs. Combinatorica 11, 45–54 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Mézard, M., Zecchina, R.: Random K-satisfiability: from an analytic solution to a new efficient algorithm. Phys. Rev. E 66, 056126 (2002)Google Scholar
  12. 12.
    Molloy, M.: The Chromatic Number of Sparse Random Graphs. Master’s Thesis, University of Waterloo (1992)Google Scholar
  13. 13.
    Shi, L., Wormald, N.: Colouring random regular graphs Research Report CORR 2004-24, Faculty of Mathematics, University of Waterloo (2004)Google Scholar
  14. 14.
    Wormald, N.C.: Models of random regular graphs. In: Lamb, J.D., Preece, D.A. (eds.) Surveys in Combinatorics. London Mathematical Society Lecture Notes Series, vol. 267, pp. 239–298. Cambridge U. Press, Cambridg (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. Díaz
    • 1
  • G. Grammatikopoulos
    • 2
    • 3
  • A. C. Kaporis
    • 2
  • L. M. Kirousis
    • 2
    • 3
  • X. Pérez
    • 1
  • D. G. Sotiropoulos
    • 4
  1. 1.Departament de Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelona
  2. 2.Department of Computer Engineering and InformaticsUniversity of PatrasPatrasGreece
  3. 3.Research Academic Computer Technology InstitutePatrasGreece
  4. 4.Department of MathematicsUniversity of PatrasPatrasGreece

Personalised recommendations