Advertisement

An Algorithm for the SAT Problem for Formulae of Linear Length

  • Magnus Wahlström
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)

Abstract

We present an algorithm that decides the satisfiability of a CNF formula where every variable occurs at most k times in time \(O(2^{N(1-c/(k+1)+O(1/k^{2}))})\) for some c (that is, O(α N ) with α< 2 for every fixed k). For k ≤ 4, the results coincide with an earlier paper where we achieved running times of O(20.1736 N ) for k = 3 and O(20.3472N ) for k = 4 (for k ≤ 2, the problem is solvable in polynomial time). For k>4, these results are the best yet, with running times of O(20.4629N ) for k = 5 and O(20.5408N ) for k = 6. As a consequence of this, the same algorithm is shown to run in time O(20.0926L ) for a formula of length (i.e.total number of literals) L. The previously best bound in terms of L is O(20.1030L ). Our bound is also the best upper bound for an exact algorithm for a 3sat formula with up to six occurrences per variable, and a 4sat formula with up to eight occurrences per variable.

Keywords

Local Search Piecewise Linear Function Conjunctive Normal Form Deterministic Algorithm Probabilistic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brueggemann, T., Kern, W.: An improved deterministic local search algorithm for 3-SAT. Theoretical Computer Science 329(1-3), 303–313 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Dahllöf, V., Jonsson, P., Wahlström, M.: Counting models for 2SAT and 3SAT formulae. Theoretical Computer Science 332(1-3), 265–291 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J.M., Papadimitriou, C.H., Raghavan, P., Schöning, U.: A deterministic (2 − 2/(k + 1))n algorithm for k-SAT based on local search. Theoretical Computer Science 289(1), 69–83 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dantsin, E., Hirsch, E.A., Wolpert, A.: Algorithms for SAT based on search in Hamming balls. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 141–151. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Dantsin, E., Wolpert, A.: Derandomization of Schuler’s algorithm for SAT. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 69–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Dantsin, E., Wolpert, A.: An improved upper bound for SAT. Technical Report TR05-030, Electronic Colloquium on Computational Complexity (2005)Google Scholar
  7. 7.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  9. 9.
    Hirsch, E.A.: New worst-case upper bounds for SAT. Journal of Automated Reasoning 24(4), 397–420 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), p. 328 (2004)Google Scholar
  11. 11.
    Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theoretical Computer Science 223, 1–72 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Schöning, U.: A probabilistic algorithm for k-SAT based on limited local search and restart. Algorithmica 32(4), 615–623 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Schuler, R.: An algorithm for the satisfiability problem of formulas in conjunctive normal form. Journal of Algorithms 54(1), 40–44 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Wahlström, M.: Faster exact solving of SAT formulae with a low number of occurrences per variable. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 309–323. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Magnus Wahlström
    • 1
  1. 1.Department of Computer and Information ScienceLinköping UniversityLinköpingSweden

Personalised recommendations