Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Branch Decompositions

  • Frederic Dorn
  • Eelko Penninkx
  • Hans L. Bodlaender
  • Fedor V. Fomin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)

Abstract

Divide-and-conquer strategy based on variations of the Lipton-Tarjan planar separator theorem has been one of the most common approaches for solving planar graph problems for more than 20 years. We present a new framework for designing fast subexponential exact and parameterized algorithms on planar graphs. Our approach is based on geometric properties of planar branch decompositions obtained by Seymour & Thomas, combined with new techniques of dynamic programming on planar graphs based on properties of non-crossing partitions. Compared to divide-and-conquer algorithms, the main advantages of our method are a) it is a generic method which allows to attack broad classes of problems; b) the obtained algorithms provide a better worst case analysis. To exemplify our approach we show how to obtain an  \(O(2^{6.903\sqrt{n}}n^{3/2}+n^{3})\) time algorithm solving weighted Hamiltonian Cycle. We observe how our technique can be used to solve Planar Graph TSP in time \(O(2^{10.8224\sqrt{n}}n^{3/2}+n^{3})\). Our approach can be used to design parameterized algorithms as well. For example we introduce the first \(2^{O\sqrt{k}}k^{O(1)}.n^{O(1)}\) time algorithm for parameterized Planar k –cycle by showing that for a given k we can decide if a planar graph on n vertices has a cycle of length ≥ k in time \(O(2^{13.6\sqrt{k}}\sqrt{k}n+n^{3})\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33(4), 461–493 (2002)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alber, J., Dorn, F., Niedermeier, R.: Experimental evaluation of a tree decomposition-based algorithm for vertex cover on planar graphs. Discrete Applied Mathematics 145, 219–231 (2005)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alber, J., Fernau, H., Niedermeier, R.: Graph separators: a parameterized view. Journal of Computer and System Sciences 67, 808–832 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Alber, J., Fernau, H., Niedermeier, R.: Parameterized complexity: exponential speed-up for planar graph problems. Journal of Algorithms 52, 26–56 (2004)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernet. 11, 1–21 (1993)MATHMathSciNetGoogle Scholar
  6. 6.
    Cook, W., Seymour, P.: Tour merging via branch-decomposition. INFORMS Journal on Computing 15, 233–248 (2003)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Deĭneko, V.G., Klinz, B., Woeginger, G.J.: Exact algorithms for the Hamiltonian cycle problem in planar graphs. Oper. Res. Lett. (2005) (to appear)Google Scholar
  8. 8.
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphs. In: 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 823–832. ACM, New York (2004)Google Scholar
  9. 9.
    Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, New York (1999)Google Scholar
  10. 10.
    Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. Journal of Graph Algorithms and Applications 3, 1–27 (1999)MathSciNetGoogle Scholar
  11. 11.
    Fomin, F., Thilikos, D.: Dominating sets in planar graphs: Branch-width and exponential speed-up. In: 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 168–177. ACM, New York (2003)Google Scholar
  12. 12.
    Fomin, F., Thilikos, D.: A simple and fast approach for solving problems on planar graphs. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 56–67. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Gu, Q.-P., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n 3). In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 373–384. Springer, Heidelberg (2005) (to appear)CrossRefGoogle Scholar
  14. 14.
    Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal of SIAM 10, 196–210 (1962)MATHMathSciNetGoogle Scholar
  15. 15.
    Hwang, R.Z., Chang, R.C., Lee, R.C.T.: The searching over separators strategy to solve some NP-hard problems in subexponential time. Algorithmica 9, 398–423 (1993)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kreweras, G.: Sur les partition non croisées d’un circle. Discrete Mathematics 1, 333–350 (1972)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R. (eds.): The traveling salesman problem. John Wiley & Sons Ltd., Chichester (1985)MATHGoogle Scholar
  18. 18.
    Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal on Applied Mathematics 36, 177–189 (1979)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM Journal on Computing 9, 615–627 (1980)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a planar graph. Journal of Combinatorial Theory Series B 62, 323–348 (1994)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. Journal of Combinatorial Theory Series B 52, 153–190 (1991)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Seymour, P., Thomas, R.: Call routing and the ratcatcher. Combinatorica 15, 217–241 (1994)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Smith, W.D., Wormald, N.C.: Geometric separator theorems and applications. In: The 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1998), pp. 232–243. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Frederic Dorn
    • 1
  • Eelko Penninkx
    • 2
  • Hans L. Bodlaender
    • 2
  • Fedor V. Fomin
    • 1
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.Department of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations