Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Branch Decompositions

  • Frederic Dorn
  • Eelko Penninkx
  • Hans L. Bodlaender
  • Fedor V. Fomin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)


Divide-and-conquer strategy based on variations of the Lipton-Tarjan planar separator theorem has been one of the most common approaches for solving planar graph problems for more than 20 years. We present a new framework for designing fast subexponential exact and parameterized algorithms on planar graphs. Our approach is based on geometric properties of planar branch decompositions obtained by Seymour & Thomas, combined with new techniques of dynamic programming on planar graphs based on properties of non-crossing partitions. Compared to divide-and-conquer algorithms, the main advantages of our method are a) it is a generic method which allows to attack broad classes of problems; b) the obtained algorithms provide a better worst case analysis. To exemplify our approach we show how to obtain an  \(O(2^{6.903\sqrt{n}}n^{3/2}+n^{3})\) time algorithm solving weighted Hamiltonian Cycle. We observe how our technique can be used to solve Planar Graph TSP in time \(O(2^{10.8224\sqrt{n}}n^{3/2}+n^{3})\). Our approach can be used to design parameterized algorithms as well. For example we introduce the first \(2^{O\sqrt{k}}k^{O(1)}.n^{O(1)}\) time algorithm for parameterized Planar k –cycle by showing that for a given k we can decide if a planar graph on n vertices has a cycle of length ≥ k in time \(O(2^{13.6\sqrt{k}}\sqrt{k}n+n^{3})\).


Planar Graph Travel Salesman Problem Exact Algorithm Hamiltonian Cycle Vertex Cover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33(4), 461–493 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alber, J., Dorn, F., Niedermeier, R.: Experimental evaluation of a tree decomposition-based algorithm for vertex cover on planar graphs. Discrete Applied Mathematics 145, 219–231 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alber, J., Fernau, H., Niedermeier, R.: Graph separators: a parameterized view. Journal of Computer and System Sciences 67, 808–832 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Alber, J., Fernau, H., Niedermeier, R.: Parameterized complexity: exponential speed-up for planar graph problems. Journal of Algorithms 52, 26–56 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernet. 11, 1–21 (1993)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Cook, W., Seymour, P.: Tour merging via branch-decomposition. INFORMS Journal on Computing 15, 233–248 (2003)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Deĭneko, V.G., Klinz, B., Woeginger, G.J.: Exact algorithms for the Hamiltonian cycle problem in planar graphs. Oper. Res. Lett. (2005) (to appear)Google Scholar
  8. 8.
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphs. In: 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 823–832. ACM, New York (2004)Google Scholar
  9. 9.
    Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, New York (1999)Google Scholar
  10. 10.
    Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. Journal of Graph Algorithms and Applications 3, 1–27 (1999)MathSciNetGoogle Scholar
  11. 11.
    Fomin, F., Thilikos, D.: Dominating sets in planar graphs: Branch-width and exponential speed-up. In: 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 168–177. ACM, New York (2003)Google Scholar
  12. 12.
    Fomin, F., Thilikos, D.: A simple and fast approach for solving problems on planar graphs. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 56–67. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Gu, Q.-P., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n 3). In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 373–384. Springer, Heidelberg (2005) (to appear)CrossRefGoogle Scholar
  14. 14.
    Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal of SIAM 10, 196–210 (1962)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Hwang, R.Z., Chang, R.C., Lee, R.C.T.: The searching over separators strategy to solve some NP-hard problems in subexponential time. Algorithmica 9, 398–423 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kreweras, G.: Sur les partition non croisées d’un circle. Discrete Mathematics 1, 333–350 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R. (eds.): The traveling salesman problem. John Wiley & Sons Ltd., Chichester (1985)zbMATHGoogle Scholar
  18. 18.
    Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal on Applied Mathematics 36, 177–189 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM Journal on Computing 9, 615–627 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a planar graph. Journal of Combinatorial Theory Series B 62, 323–348 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. Journal of Combinatorial Theory Series B 52, 153–190 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Seymour, P., Thomas, R.: Call routing and the ratcatcher. Combinatorica 15, 217–241 (1994)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Smith, W.D., Wormald, N.C.: Geometric separator theorems and applications. In: The 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1998), pp. 232–243. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Frederic Dorn
    • 1
  • Eelko Penninkx
    • 2
  • Hans L. Bodlaender
    • 2
  • Fedor V. Fomin
    • 1
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.Department of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations