Computing Equilibrium Prices: Does Theory Meet Practice?

  • Bruno Codenotti
  • Benton McCune
  • Rajiv Raman
  • Kasturi Varadarajan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)


The best known algorithms for the computation of market equilibria, in a general setting, are not guaranteed to run in polynomial time. On the other hand, simple poly-time algorithms are available for various restricted – yet important – markets.

In this paper, we experimentally explore the gray zone between the general problem and the poly-time solvable special cases. More precisely, we analyze the performance of some simple algorithms, for inputs which are relevant in practice, and where the theory does not provide poly-time guarantees.


Utility Function Exchange Economy Market Equilibrium Initial Endowment Market Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arrow, K.J., Debreu, G.: Existence of an Equilibrium for a Competitive Economy. Econometrica 22(3), 265–290 (1954)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arrow, K.J., Block, H.D., Hurwicz, L.: On the stability of the competitive equilibrium, II. Econometrica 27, 82–109 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arrow, K.J., Chenery, H.B., Minhas, B.S., Solow, R.M.: Capital-Labor Substitution and Economic Efficiency. The Review of Economics and Statistics 43(3), 225–250 (1961)CrossRefGoogle Scholar
  4. 4.
    Brooke, A., Kendrick, D., Meeraus, A.: GAMS: A user’s guide. The Scientific Press, South San Francisco (1988)Google Scholar
  5. 5.
    Codenotti, B., Pemmaraju, S., Varadarajan, K.: On the Polynomial Time Computation of Equilibria for Certain Exchange Economies. In: SODA 2005 (2005)Google Scholar
  6. 6.
    Codenotti, B., Pemmaraju, S., Varadarajan, K.: The computation of market equilibria. ACM SIGACT News 35(4), 23–37 (2004)CrossRefGoogle Scholar
  7. 7.
    Codenotti, B., McCune, B., Pemmaraju, S., Raman, R., Varadarajan, K.: An experimental study of different approaches to solve the market equilibrium problem. In: ALENEX 2005 (2005)Google Scholar
  8. 8.
    Codenotti, B., Varadarajan, K.: Efficient Computation of Equilibrium Prices for Markets with Leontief Utilities. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 371–382. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Codenotti, B., McCune, B., Varadarajan, K.: Market Equilibrium via the Excess Demand Function. In: STOC 2005 (2005)Google Scholar
  10. 10.
    Devanur, N.R., Papadimitriou, C.H., Saberi, A., Vazirani, V.V.: Market Equilibrium via a Primal-Dual-Type Algorithm. In: FOCS 2002, pp. 389–395 (2002); Full version with revisions available on line (2003)Google Scholar
  11. 11.
    Dirkse, S.P., Ferris, M.C.: A pathsearch damped Newton method for computing general equilibria. In: Annals of Operations Research, pp. 211–232 (1996)Google Scholar
  12. 12.
    Eaves, B.C., Scarf, H.: The Solution of Systems of Piecewise Linear Equations. Mathematics of Operations Research 1(1), 1–27 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Eisenberg, E.: Aggregation of Utility Functions. Management Sciences 7(4), 337–350 (1961)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Ferris, M.C., Munson, T.S.: Path 4.6, Available on line at:
  15. 15.
    Ginsburgh, V.A., Waelbroeck, J.L.: Activity Analysis and General Equilibrium Modelling. North-Holland, Amsterdam (1981)zbMATHGoogle Scholar
  16. 16.
    Gjerstad, S.: Multiple Equilibria in Exchange Economies with Homothetic, Nearly Identical Preference, University of Minnesota, Center for Economic Research, Discussion Paper 288 (1996)Google Scholar
  17. 17.
    Hirota, M.: On the Probability of the Competitive Equilibrium Being Globally Stable: the CES Example, Social Sciences Working Paper 1129, Caltech (2002)Google Scholar
  18. 18.
    Jain, K., Mahdian, M., Saberi, A.: Approximating Market Equilibria. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 98–108. Springer, Heidelberg (2003)Google Scholar
  19. 19.
    Kehoe, T.J.: Computation and Multiplicity of Equilibria. In: Handbook of Mathematical Economics, vol. IV, pp. 2049–2144. North Holland, Amsterdam (1991)Google Scholar
  20. 20.
    Mantel, R.R.: The welfare adjustment process: its stability properties. International Economic Review 12, 415–430 (1971)zbMATHCrossRefGoogle Scholar
  21. 21.
    Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press, Oxford (1995)Google Scholar
  22. 22.
    Negishi, T.: Welfare Economics and Existence of an Equilibrium for a Competitive Economy. Metroeconomica 12, 92–97 (1960)zbMATHCrossRefGoogle Scholar
  23. 23.
    Papadimitriou, C.H.: On the Complexity of the Parity Argument and other Inefficient Proofs of Existence. Journal of Computer and System Sciences 48, 498–532 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Scarf, H.: Some Examples of Global Instability of the Competitive Equilibrium. International Economic Review 1, 157–172 (1960)zbMATHCrossRefGoogle Scholar
  25. 25.
    Scarf, H.: The Approximation of Fixed Points of a Continuous Mapping. SIAM J. Applied Math. 15, 1328–1343 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Scarf, H.: Comment on “On the Stability of Competitive Equilibrium and the Patterns of Initial Holdings: An Example. International Economic Review 22(2), 469–470 (1981)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Shoven, J.B., Whalley, J.: Applying General Equilibrium. Cambridge University Press, Cambridge (1992)Google Scholar
  28. 28.
    Smale, S.: A convergent process of price adjustment. Journal of Mathematical Economics 3, 107–120 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Whalley, J., Zhang, S.: Tax induced multiple equilibria. Working paper, University of Western Ontario (2002)Google Scholar
  30. 30.
    Ye, Y.: A Path to the Arrow-Debreu Competitive Market Equilibrium, Discussion Paper, Stanford University (February 2004); To appear in Mathematical ProgrammingGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Bruno Codenotti
    • 1
  • Benton McCune
    • 2
  • Rajiv Raman
    • 2
  • Kasturi Varadarajan
    • 2
  1. 1.Toyota Technological Institute at ChicagoChicago
  2. 2.Department of Computer ScienceThe University of IowaIowa City

Personalised recommendations