A Sub-quadratic Algorithm for Conjunctive and Disjunctive Boolean Equation Systems

  • Jan Friso Groote
  • Misa Keinänen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3722)

Abstract

We present a new algorithm for conjunctive and disjunctive boolean equation systems which arise frequently in the verification and analysis of finite state concurrent systems. In contrast to the previously known O(e 2) time algorithms, our algorithm computes the solution to such a fixpoint equation system with size e and alternation depth d in O(e log d) time (here d < e). We show the correctness and complexity of the algorithm. We discuss heuristics and describe how the algorithm can be efficiently implemented. The algorithm is compared to a previous solution via experiments on verification examples. Our measurements indicate that the new algorithm makes the verification of a large class of fixpoint expressions more tractable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, H.R.: Model checking and boolean graphs. Theoretical Computer Science 126, 3–30 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arnold, A., Niwinski, D.: Rudiments of μ-calculus. Studies in logic and the foundations of mathematics, vol. 146. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  3. 3.
    Blom, S., Fokkink, W., Groote, J., van Langevelde, I., Lisser, B., van de Pol, J.: μCRL: a toolset for analysing algebraic specifications. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 250–254. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Bradfield, J., Stirling, C.: Modal Logics and mu-Calculi: An introduction. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, ch. 4. Elsevier, Amsterdam (2001)Google Scholar
  5. 5.
    Groote, J.F., Keinänen, M.K.: Solving Disjunctive/Conjunctive Boolean Equation Systems with Alternating Fixed Points. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 436–450. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    King, V., Kupferman, O., Vardi, M.Y.: On the complexity of parity word automata. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 276–286. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Kozen, D.: Results on the propositional μ-calculus. Theoretical computer Science 27, 333–354 (1983)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Mader, A.: Verification of Modal Properties using Boolean Equation Systems. PhD thesis, Technical University of Munich (1997)Google Scholar
  9. 9.
    Mateescu, R.: A Generic On-the-Fly Solver for Alternation-Free Boolean Equation Systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 81–96. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Tanenbaum, A.: Computer Networks, 4th edn. Prentice Hall PTR, Englewood Cliffs (2003)Google Scholar
  11. 11.
    Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM Journal of Computing 1(2), 146–160 (1972)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Tarjan, R.E.: A hierarchical clustering algorithm using strong components. Information Processing Letters 14(1), 26–29 (1982)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jan Friso Groote
    • 1
  • Misa Keinänen
    • 2
  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Laboratory for Theoretical Computer Science, Department of Computer Science and EngineeringHelsinki University of TechnologyFinland

Personalised recommendations