Efficient Algorithms for Detecting Regular Point Configurations

  • Luzi Anderegg
  • Mark Cieliebak
  • Giuseppe Prencipe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3701)

Abstract

A set of n points in the plane is in equiangular configuration if there exist a center and an ordering of the points such that the angle of each two adjacent points w.r.t. the center is \(\frac{360^{\circ}}{n}\), i.e., if all angles between adjacent points are equal. We show that there is at most one center of equiangularity, and we give a linear time algorithm that decides whether a given point set is in equiangular configuration, and if so, the algorithm outputs the center. A generalization of equiangularity is σ-angularity, where we are given a string σ of n angles and we ask for a center such that the sequence of angles between adjacent points is σ. We show that σ-angular configurations can be detected in time O(n4 log n).

Keywords

Weber point equiangularity σ-angularity design of algorithms computational geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderegg, L., Cieliebak, M., Prencipe, G., Widmayer, P.: When is Weber Point Invariant? (Manuscript)Google Scholar
  2. 2.
    Bajaj, C.: The Algebraic Degree of Geometric Optimization Problem. Discrete and Computational Geometry 3, 177–191 (1988)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chandrasekaran, R., Tamir, A.: Algebraic optimization: The Fermat-Weber location problem. Mathematical Programming 46, 219–224 (1990)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Cockayne, E.J., Melzak, Z.A.: Euclidean constructibility in graph-minimization problems. Math. Magazine 42, 206–208 (1969)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1990)MATHGoogle Scholar
  7. 7.
    Goodman, J.E., O’Rourke, J.: Handbook of Discrete and Computational Geometry. CRC Press LLC, Boca Raton (1997)MATHGoogle Scholar
  8. 8.
    Weiszfeld, E.: Sur le Point Pour Lequel la Somme Des Distances de n Points Donnés Est Minimum. Tohoku Mathematical 43, 355–386 (1936)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Luzi Anderegg
    • 1
  • Mark Cieliebak
    • 1
  • Giuseppe Prencipe
    • 2
  1. 1.ETH Zurich 
  2. 2.Università di Pisa 

Personalised recommendations